Free Shipping on All Orders $75 Or More!

Your Trusted Brand for Over 35 Years

Life Extension Magazine

<< Back to June 2009

Physician’s Guide: Using Blood Test Findings To Safely Induce Weight Loss

June 2009

By William Faloon

Optimal Blood Ranges to Facilitate Weight Loss

Optimal Blood Ranges to Facilitate Weight Loss

There are a variety of blood tests that can direct what drugs, hormones, and nutrients you prescribe to correct underlying hormonal and metabolic disorders and facilitate weight loss.

An obese individual will often exhibit dangerously high levels of C-reactive protein. Not only is this inflammatory marker associated with increased vascular disease, dementia, and cancer risk, but it can preclude weight loss by binding to leptin and creating a state of leptin resistance.123,148-150 Leptin is a satiety hormone that also helps promote the breakdown of triglycerides in adipocytes.151-153 Most of the drugs suggested in this protocol will induce a significant reduction in C-reactive protein blood levels. For men, ideal C-reactive protein is below 0.55 mg/L. Women should be below 1.55 mg/L of blood.

We have learned to accept any reading of fasting glucose under 100 mg/dL of blood as acceptable. The reality is that any increase of fasting glucose over 85 mg/dL incrementally increases heart attack risk and probably contributes to unwanted fat accumulation. Ideal fasting glucose is probably in the range of 72-74 mg/dL, but it will be challenging to achieve these levels in overweight and obese individuals even when all the medications suggested in this protocol are concomitantly prescribed.

The standard reference range for fasting triglycerides extends up to 149 mg/dL of blood, but any number above 80 mg/dL is probably too high. To protect against vascular disease, triglyceride levels should be suppressed far below 100 mg/dL. To treat the postprandial lipemia that has been identified as a probable cause of obesity, suppressing triglyceride levels below 60 mg/dL of blood would be ideal, though you will be challenged to achieve these levels in most aging overweight patients. Scientists have identified a phenomenon known as postprandial hypertriglyceridemia, in which triglyceride levels remain high after a meal; this represents a significant independent risk factor for vascular disease. Don’t hesitate to test your patient’s blood two to three hours after they have ingested a typical meal. A patient with acceptable fasting triglycerides might demonstrate higher than desirable (greater than 133 mg/dL) postprandial triglycerides. The medications and nutrients suggested in this protocol should sharply reduce triglyceride levels and thus help purge the bloodstream of chronic postprandial lipemia that contributes to their surplus body fat stores.

The reference range for thyroid hormone tests can cause those with less than optimal thyroid hormone levels to be diagnosed as “normal.” Make sure your patient’s TSH is below 2.00 mIU/mL of blood and free T3 is in the upper one-third of the standard reference range.

For most aging men, a free testosterone blood reading of 20-25 pg/mL is optimal, while estradiol levels should be kept at 20-30 pg/mL of blood.

The optimal blood level of estradiol in aging women varies considerably amongst individuals. An estradiol target to attain using bioidentical estrogens is 90-250 pg/mL. If this range helps facilitate abdominal fat loss, then it may be ideal for that particular patient. Make sure any female patient prescribed estrogen reviews the cancer risk-reduction program that can be accessed by logging on to Remember that in female patients, excess free testosterone can cause abdominal obesity.

Managing “Unrealistic” Weight-Loss Expectations

Clinical studies document that overweight and obese subjects have unrealistic expectations about the rapidity and amount of body fat loss that will occur in response to weight-loss drugs.154

For many patients, if immediate fat-loss results do not occur, they will abandon the program, even when being repeatedly told that weight loss will be a gradual process. Regrettably, the desire for major cosmetic weight loss and the lack of understanding of the medical benefits derived from modest body fat reduction can conspire to derail the best-laid scientific protocols.

Managing “Unrealistic” Weight-Loss Expectations

A key element to short- and long-term success is to educate the patient while encouraging continuous compliance. The article titled Weight Loss should be printed out and given to patients to help them understand what they need to do to allow a comprehensive program like this to work for them.

Addressing psychological issues such as emotional eating are important patient considerations. Drugs like Wellbutrin® and Adderall® have been shown to induce weight loss, but can cause psychological disturbances.155-157 Likewise, the drug sibutramine (Meridia®) has demonstrated potent weight-loss properties,158,159 but we are concerned about the long-term effects of artificially interfering with normal neurotransmitter reuptake. Sibutramine reduces the reuptake of serotonin (by 54%), norepinephrine (by 73%), and dopamine (by 16%), thereby increasing the levels of these transmitters in the brain and helping to enhance early satiety.160

As is explained in Weight Loss, patients with emotional eating issues may benefit from a specially formulated tryptophan supplement designed to deliver greater amounts of tryptophan into the brain for conversion to serotonin.

Summary: Is All of This Too Complicated?

After reading this multi-pronged approach to optimally induce immediate and sustainable weight loss in your patients, you may wonder if it is too complicated and expensive.

Fortunately, Life Extension® now offers comprehensive blood tests at the lowest prices ever. Many of the drugs can be obtained in very low-cost generic or compounded form. There are also nutritional supplements that can be substituted for some of the medications. So the cost of implementing this program is affordable to most patients.

As far as the complexities of this protocol, please remember that approximately 2.2 million Americans die each year.161,162 When tallying up the data, including higher rates of suicides and accidents in obese individuals, it becomes rapidly apparent that the metabolic dysfunction displayed outwardly in the form of excess body fat is by far the leading killer. Be it stroke, heart attack, dementia, or cancer, the more overweight a patient is, the greater the likelihood they will be stricken by these lethal diseases.

If this multi-pronged protocol induces the kind of sustainable weight loss and reduction in metabolic disorders that the published studies indicate it will, you may want to recommend it for all of your overweight or obese patients. It seems more logical to prioritize even modest reductions in body weight as opposed to dealing with the plethora of obesity-related diseases that inevitably develop.

Up until now, there was little that physicians could do to induce significant fat loss in their aging patients. For the past 50 years, a wide variety of methods have been attempted to overcome the worsening obesity epidemic, yet there are more overweight Americans now than ever before. Until a magic bullet is discovered, the only way to achieve optimal weight control in your patients may be to follow most, if not all, of the suggestions you have just read.

In addition, please refer your patients to the Nine Pillars of Successful Weight Loss to provide them with guidance on dietary and lifestyle changes they should implement to enhance the fat-reducing benefits of the various medications discussed in this article.

If you have any questions on the scientific content of this article, please call a Life Extension Wellness Specialist at 1-800-226-2370.

  1. Curr Hypertens Rep. 2008 Feb;10(1):32-8.
  2. Lancet. 2005 Apr 16;365(9468):1415-28.
  3. Diabetes. 1996 Jul;45(Suppl 3):S59-61.
  4. J Nutr Biochem. 2008 Aug;19(8):491-504.
  5. Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H904-11.
  6. Nutr Rev. 2007 Dec;65(12 Pt 2):S253-9.
  7. Prev Med. 2006 May;42(5):336-42.
  8. Acta Physiol Scand. 2005 Aug;184(4):285-93.
  9. Curr Atheroscler Rep. 2004 Nov;6(6):424-31.
  11. JAMA. 2002 Dec 4;288(21):2709-16.
  12. Int J Obes Relat Metab Disord. 1996 Apr;20(4):291-302.
  13. Med Sci (Paris). 2005 Dec;21 Spec No10-8.
  14. Metab Syndr Relat Disord. 2008 Winter;6(4):299-304.
  15. Obes Rev. 2009 Mar;10(Suppl 1):24-33.
  17. Am J Clin Nutr. 2007 Jun;85(6):1511-20.
  18. Clin Ther. 2005;27(Suppl B):S42-56.
    _orig=search&_ sort=d&view=c&_acct=C000050221& _version=1&_urlVersion=0& _userid=10&md5=36aa01bb7107426818b8e8747f3cf0aa.
  20. Stroke. 2004 May;35(5):1073-8.
  21. Eur Heart J. 2004 Jan;25(1):10-6.
  22. Int J Cardiol. 2006 Feb 8;107(1):11-20.
  23. Aronson JK. Meyler’s Side Effects of Endocrine and Metabolic Drugs. New York, NY: Elsevier Science; 2008:361.
  24. Curr Diabetes Rev. 2008 Nov;4(4):340-56.
  25. Nutrition. 2005 Jul-Aug;21(7-8):848-54.
  26. Altern Med Rev. 2004 Mar;9(1):63-9.
  27. JAMA. 2007 Jul 18;298(3):299-308.
  28. J Am Diet Assoc. 1998 Oct;98(10 Suppl 2):S23-6.
  29. Drugs Today (Barc). 1999 Feb;35(2):139-45.
  30. Prim Care. 2003 Jun;30(2):427-40.
  31. Obesity (Silver Spring). 2008 Mar;16(3):623-9.
  32. Arch Intern Med. 2007 May 14;167(9):893-902.
  33. FASEB J. 2000 Jun;14(9):1132-8.
  34. Obes Surg. 1993 Nov;3(4):421-4.
  35. Curr Atheroscler Rep. 2003 Nov;5(6):445-51.
  36. Appl Physiol Nutr Metab. 2007 Jun;32(3):473-80.
  37. Drugs. 2006;66(12):1625-56.
  38. Obes Res. 2000 Jan;8(1):49-61.
  39. Arq Bras Cardiol. 2007 Dec;89(6):409-14.
  40. Hormones (Athens). 2006 Oct;5(4):259-69.
  41. Am J Cardiol. 2003 Apr 15;91(8):961-4.
  42. Angiology. 2007 Feb;58(1):26-33.
  43. Eat Weight Disord. 2006 Mar;11(1):e35-41.
  44. Metab Syndr Relat Disord. 2005;3(2):122-9.
  45. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2111-21.
  46. Am J Clin Nutr. 2006 Dec;84(6):1290-8.
  47. Ir J Med Sci. 2005 Jan-Mar;174(1):8-20.
  48. Am J Clin Nutr. 2003 Mar;77(3):605-11.
  49. Curr Opin Lipidol. 2002 Feb;13(1):33-40.
  50. J Am Coll Nutr. 2000 Jun;19(3):383-91.
  51. J Nutr. 2002 Jul;132(7):1879-85.
  52. J Nutr. 2005 Jun;135(6):1339-42.
  53. J Nutr. 2004 Apr;134(4):880-5.
  54. Am J Clin Nutr. 2003 Feb;77(2):300-7.
  55. Am J Clin Nutr. 2000 Apr;71(4):914-20.
  56. Nutr Metab Cardiovasc Dis. 2001 Feb;11(1):7-16.
  57. Atherosclerosis. 2006 Apr;185(2):313-9.
  58. Br J Nutr. 2005 Apr;93(4):543-7.
  59. Sports Med. 2006;36(7):547-60.
  60. Arch Intern Med. 2000 Apr 24;160(8):1177-84.
  61. Am J Cardiol. 2000 May 1;85(9):1100-5.
  62. Diabetes Care. 2005 Apr;28(4):844-9.
  63. Metabolism. 1998 Apr;47(4):371-6.
  64. Diabetologia. 2006 Mar;49(3):527-37.
  65. Exp Clin Endocrinol Diabetes. 2005 Feb;113(2):80-4.
  66. Am J Cardiol. 2004 Jan 1;93(1):31-9.
  67. Atherosclerosis. 2004 Feb;172(2):375-82.
  68. Chin Med J (Engl). 2003 Mar;116(3):453-8.
  69. Am J Med. 1997 Jan;102(1):99-110.
  70. Advances in Therapy. 1997 Jan 1;14(6):338–47.
  71. Drugs. 1999;58(Suppl 1):71-3.
  72. Diabetes Care. 2001 Mar;24(3):489-94.
  73. Biochem Biophys Res Commun. 2002 Nov 15;298(5):779-84.
  74. Obes Rev. 2004 Nov;5(4):197-216.
  75. Eur Heart J. 2002 May;23(9):706-13.
  76. Circulation. 2008 Apr 1;117(13):1658-67.
  77. J Endocrinol Invest. 2006;29(3 Suppl):77-82.
  79. J Natl Cancer Inst. 2006 Jul 5;98(13):920-31.
  80. Int J Obes Relat Metab Disord. 2002 Jun;26(6):747-53.
  81. Curr Urol Rep. 2007 Nov;8(6):467-71.
  82. Curr Opin Endocrinol Diabetes Obes. 2007 Jun;14(3):226-34.
  83. Maturitas. 2008 May 20;60(1):10-8.
  84. J Clin Endocrinol Metab. 2008 Jan;93(1):139-46.
  85. J Clin Endocrinol Metab. 1995 Jan;80(1):239-43.
  86. Clin Endocrinol (Oxf). 2005 Sep;63(3):239-50.
  87. Int J Obes Relat Metab Disord. 2000 Apr;24(4):485-91.
  88. Obes Res. 1995 Nov;3(Suppl 4):609S-12S.
  89. J Clin Endocrinol Metab. 2001 Aug;86(8):3604-10.
  90. Int J Obes Relat Metab Disord. 1995 Sep;19(9):614-24.
  91. Metabolism. 1997 Feb;46(2):179-85.
  92. J Clin Endocrinol Metab. 2006 Jun;91(6):1995-2010.
  93. Cancer Epidemiol Biomarkers Prev. 1996 Aug;5(8):621-5.
  94. Psychosom Med. 2000 Sep;62(5):623-32.
  95. Metabolism. 1992 Aug;41(8):882-6.
  96. Metabolism. 1980 Oct;29(10):980-5.
  97. J Clin Endocrinol Metab. 1990 Feb;70(2):473-9.
  98. J Clin Invest. 1988 Sep;82(3):1106-12.
  99. J Clin Invest. 1982 May;69(5):1119-25.
  100. Am J Obstet Gynecol. 1998 Jan;178(1 Pt 1):101-7.
  101. J Clin Endocrinol Metab. 1995 Mar;80(3):936-41.
  102. Am J Epidemiol. 2008 May 15;167(10):1207-16.
  103. JAMA. 2008 Mar 5;299(9):1036-45.
  104. J Steroid Biochem Mol Biol. 2008 Feb;108(3-5):272-80.
  105. Obesity (Silver Spring). 2009 Jan 29.
  106. J Clin Endocrinol Metab. 2006 Oct;91(10):3970-80.
  107. Hum Reprod. 2003 Jan;18(1):57-60.
  108. Clin Endocrinol (Oxf). 2004 Feb;60(2):241-9.
  109. J Fam Pract. 1994 Jun;38(6):577-82.
  110. Thyroid. 1998 Sep;8(9):803-13.
  111. Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL. Harrison’s Principles of Internal Medicine. 16th ed. New York, NY: McGraw-Hill Professional; 2004.
  112. Metabolism. 1976 Jan;25(1):79-83.
  113. J Clin Endocrinol Metab. 1977 Oct;45(4):707-13.
  114. J Endocrinol. 1989 Feb;120(2):337-50.
  115. Int J Obes. 1990 Mar;14(3):249-58.
  116. N Engl J Med. 1979 Mar 15;300(11):579-84.
  117. Trans Assoc Am Physicians. 1978;91:169-79.
  118. Metabolism. 1975 Oct;24(10):1177-83.
  119. Int J Obes. 1989;13(4):487-96.
  120. J Clin Endocrinol Metab. 1996 Mar;81(3):968-76.
  121. Clin Endocrinol (Oxf). 1984 Oct;21(4):357-67.
  122. Thyroid. 2008 Feb;18(2):197-203.
  123. Nat Med. 2006 Apr;12(4):425-32.
  124. Lipids Health Dis. 2009;87.
  125. Lipids Health Dis. 2005 May 25;412.
  126. Lipids Health Dis. 2008;744.
  127. Acta Cardiol. 2005 Jun;60(3):265-9.
  128. J Clin Endocrinol Metab. 2003 Oct;88(10):4649-54.
  129. Obesity (Silver Spring). 2008 Jul;16(7):1573-8.
  130. Horm Metab Res. 2008 Mar;40(3):199-205.
  131. J Am Coll Cardiol. 2004 Jul 7;44(1):152-8.
  132. JAMA. 2003 Jul 23;290(4):502-10.
  133. J Am Coll Nutr. 2008 Jun;27(3):434-40.
  134. Am J Cardiol. 2006 Sep 15;98(6):743-5.
  135. QJM. 2002 Dec;95(12):787-96.
  136. Am J Epidemiol. 2008 Feb 1;167(3):313-20.
  137. Thromb Res. 2008;122(1):125-33.
  138. Surgery. 2005 Aug;138(2):212-22.
  139. J Thromb Haemost. 2007 Jun;5(6):1309-17.
  140. J Nutr. 2008 Oct;138(10):1939-45.
  141. WG0401 protective against generalized inflammation in a human study. Unpublished data; WellGen, Inc.; 2007.
  142. N Engl J Med. 1996 Jan 25;334(4):269-70.
  143. Drugs. 1999;58(Suppl 1):71-3.
  144. Obes Res. 1998 Jan;6(1):47-53.
  145. Intern Med. 2008;47(8):697-703.
  146. Clin Exp Pharmacol Physiol. 2008 Aug;35(8):895-903.
  147. Obes Res. 2001 Nov;9(11):662-7.
  148. Curr Hypertens Rep. 2008 Apr;10(2):131-7.
  149. Front Biosci. 2007;12:3531-44.
  150. Obesity (Silver Spring). 2006 Aug;14(Suppl 5):254S-8S.
  151. Endocr J. 2008 Oct;55(5):827-37.
  152. Exp Biol Med (Maywood). 2005 Mar;230(3):200-6.
  153. FASEB J. 2001 Feb;15(2):333-40.
  154. J Consult Clin Psychol. 2003 Dec;71(6):1084-9.
  155. J Clin Psychopharmacol. 2006 Aug;26(4):409-13.
  156. Prague Med Rep. 2005;106(3):291-6.
  157. Clin Ther. 2006 Feb;28(2):266-79.
  158. Eur J Pharmacol. 2000 May 26;397(1):93-102.
  159. Int J Obes Relat Metab Disord. 1998 Aug;22(Suppl 1):S18-28.
  163. JAMA. 2004 Mar 10;291(10):1238-45.