Free Shipping on All Orders $75 Or More!

Your Trusted Brand for Over 35 Years

Life Extension Magazine

<< Back to December 2016

Taurine, Pterostilbene, Magnesium, Curcumin And Stress, And Carnosine

December 2016


Taurine increases hippocampal neurogenesis in aging mice.

Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

Stem Cell Res . 2015 May; 14(3): 369-379.

Comparison between single and combined post-treatment with S-Methyl-N,N-diethylthiolcarbamate sulfoxide and taurine following transient focal cerebral ischemia in rat brain.

We have recently reported on the efficacy of an N-methyl-d-aspartate (NMDA) receptor partial antagonist, S-Methyl-N,N-diethylthiolcarbamate sulfoxide (DETC-MeSO), in improving outcome following stroke, including reduced infarct size and calcium influx, suppressing the endoplasmic reticulum (ER) stress-induced apoptosis as well as improving behavioral outcome. DETC-MeSO was shown to suppress the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway, one of the major ER stress pathways. Several studies including ours have provided evidence that taurine also has neuroprotective effects through reducing apoptosis and inhibiting activating transcription factor 6 (ATF6) and inositol requiring enzyme 1 (IRE-1) pathways. We hypothesized that a combined treatment with DETC-MeSO and taurine would ameliorate ischemia-induced brain injury by inhibiting all three ER stress pathways. Twenty four hours following reperfusion of a 2-h ischemic stroke, rats received either 0.56-mg/kg DETC-MeSO or 40-mg/kg of taurine, either alone or in combination, subcutaneously for 4days. Our study showed that combined DETC-MeSO and taurine, but not DETC-MeSO alone at the dose used, greatly reduced the infarct size, improved performance on the neuro-score test and attenuated proteolysis of alphaII-spectrin. Meanwhile, the level of the pro-apoptotic protein, Bax, declined and the anti-apoptotic protein, B-cell lymphoma 2 (BCL-2), expression was markedly increased. Combination therapy decreased both caspase-12 and caspase-3 activation by preventing the release of Cytochrome-c from mitochondria, indicating attenuation of apoptosis in ischemic infarct. Glucose-regulated protein (GRP)78 as a marker of the unfolded protein response decreased and levels of the key ER stress protein markers p-PERK-ATF4, p-eIF2alpha and cleaved-ATF-6 were found to significantly decline. NeuN expression levels indicated that more neurons were protected in the presence of DETC-MeSO and taurine. We also showed that combined treatment can prevent gliosis and increase p-AKT a pro-survival marker in the penumbra. Therefore, we conclude that combined treatment with both DETC-MeSO and taurine synergistically inhibits all three ER stress pathways and apoptosis and therefore can be a novel and effective treatment after ischemic stroke.

Neuroscience . 2015 Aug 6; 300: 460-473.

Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment.

The aim of this paper is to provide a comprehensive review of the epidemiological evidence linking type 2 diabetes mellitus and its related conditions, including obesity, hyperinsulinemia, and metabolic syndrome, to Alzheimer’s disease (AD). Several mechanisms could help to explain this proposed link; however, our focus is on insulin resistance and deficiency. Studies have shown that insulin resistance and deficiency can interact with amyloid-beta protein and tau protein phosphorylation, each leading to the onset and development of AD. Based on those epidemiological data and basic research, it was recently proposed that AD can be considered as “type 3 diabetes”. Special attention has been paid to determining whether antidiabetic agents might be effective in treating AD. There has been much research both experimental and clinical on this topic. We mainly discuss the clinical trials on insulin, metformin, thiazolidinediones, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors in the treatment of AD. Although the results of these trials seem to be contradictory, this approach is also full of promise. It is worth mentioning that the therapeutic effects of these drugs are influenced by the apolipoprotein E (APOE)-epsilon4 genotype. Patients without the APOE-epsilon4 allele showed better treatment effects than those with this allele.

Clin Interv Aging. 2015 10: 549-560.

Gradual lesion expansion and brain shrinkage years after stroke.

BACKGROUND AND PURPOSE: Lesioned brains of patients with stroke may change through the course of recovery; however, little is known about their evolution in the chronic phase. Here, we aimed to quantify the extent of lesion volume change and brain atrophy in the chronic poststroke brain using magnetic resonance imaging. METHODS: Optimized T1-weighted scans were collected more than once (time between visits=2 months to 6 years) in 56 patients (age=36-90 years; time poststroke=3 months to 20 years). Volumetric changes attributable to lesion growth and atrophy were quantified with automated procedures. We looked at how volumetric changes related to time between visits, using nonparametric statistics, after controlling for age, time poststroke, and brain and lesion size at the earlier time. RESULTS: Lesions expanded more in patients who had longer time-intervals between their imaging sessions (partial rank correlation rho=0.56; P<0.001). The median rate of lesion growth was 1.59 cm(3) per year. Across patients, the whole-brain atrophy rate was 0.95% per year, with accelerated atrophy in the ipsilesional hemisphere. CONCLUSIONS: We show gradual lesion expansion many years after stroke, beyond that expected by normal aging and after controlling for other variables. Future studies need to understand how structural reorganization enables long-term recovery even when the brain is shrinking.

Stroke. 2014 Mar; 45(3): 877-879.

Cooperation of taurine uptake and dopamine D1 receptor activation facilitates the induction of protein synthesis-dependent late LTP.

Co-activation of NMDA and dopamine receptors is required for the induction of the late phase of LTP (L-LTP) that is dependent on new protein synthesis. Other neuromodulatory substances may also contribute to this process. Here, we examined whether taurine is one of the neuromodulators contributing to L-LTP induction, since it is known that taurine uptake induces a long-lasting synaptic potentiation dependent on protein synthesis, and taurine uptake inhibition blocks L-LTP induced by tetanization. Experiments were conducted using rat hippocampal slices where field synaptic potentials were evoked and recorded in CA3-CA1 synapses. Taurine (1 mM) applied 10 min before a high frequency stimulation (HFS) train converted a transitory early-LTP (E-LTP) into an L-LTP dependent on protein synthesis. This taurine effect was blocked by a taurine uptake inhibitor. A facilitation of L-LTP induction was also obtained by pre-application of SKF38393, a D1/D5 dopamine receptor (D1R) agonist. In this case, LTP facilitation was not affected by the taurine uptake inhibitor. Nevertheless, when taurine and SKF38393 were simultaneously pre-applied at a concentration that individually did not modify E-LTP, they produced a synergistic mechanism that facilitated the induction of L-LTP with a sole HFS train. This facilitation of L-LTP was blocked by inhibiting either taurine uptake or D1R activation. Taurine and SKF38393 activated different signaling pathways to transform E-LTP into L-LTP. Taurine-induced L-LTP facilitation required MAPK activation, while D1R-agonist-induced facilitation depended mainly on PKA activation and partially on MAPK activation. On the other hand, the synergistic mechanisms induced by the cooperative action of taurine and SKF38393 were impaired by inhibitors against MAPK, PKA and PI3-K. This pharmacological profile resembles that displayed by L-LTP induced by three HFS trains at 10-min intervals. These results indicate that taurine uptake is necessary and cooperates with other neurotransmitter systems in the induction of L-LTP.

Neuropharmacology. 2014 Apr; 79: 101-111.