Free Shipping on All Orders $75 Or More!

Your Trusted Brand for Over 35 Years

Life Extension Magazine

<< Back to July 2016

Traumatic Brain Injury, NAD, MacuGuard, and Fish Oil

July 2016

By Life Extension

Traumatic Brain Injury

Brain recovery after a plane crash: Treatment with growth hormone (GH) and neurorehabilitation: A case report.

The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. METHODS: Fifteen months after the accident, the patient was treated with GH, 1 mg/day, at three-month intervals, followed by one-month resting, together with daily neurorehabilitation. Blood analysis at admission showed that no pituitary deficits existed. At admission, the patient presented: spastic tetraplegia, dysarthria, dysphagia, very severe cognitive deficits and joint deformities. Computerized tomography scanners (CT-Scans) revealed the practical loss of the right brain hemisphere and important injuries in the left one. Clinical and blood analysis assessments were performed every three months for three years. Feet surgery was needed because of irreducible equinovarus. RESULTS: Clinical and kinesitherapy assessments revealed a prompt improvement in cognitive functions, dysarthria and dysphagia disappeared and three years later the patient was able to live a practically normal life, walking alone and coming back to his studies. No adverse effects were observed during and after GH administration. CONCLUSIONS: These results, together with previous results from our group, indicate that GH treatment is safe and effective for helping neurorehabilitation in TBI patients, once the acute phase is resolved, regardless of whether or not they have GH-deficiency (GHD).

Int J Mol Sci . 2015 16(12): 30470-30482.

Neurosteroid levels in patients with obsessive-compulsive disorder.

OBJECTIVE: Changes in serum neurosteroid levels have been reported in stress-related disorders such as anxiety and depression, but not in patients with obsessive-compulsive disorder (OCD). We thus investigated such changes in patients with OCD. METHODS: We compared the serum levels of progesterone, pregnanolone, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulphate (DHEA-S), cortisol and testosterone in 30 patients with OCD and 30 healthy controls. RESULTS: When male and female patients were evaluated together, DHEA and cortisol levels were significantly higher in patients with OCD than the control group. When the genders were evaluated separately, DHEA and cortisol levels were higher in female patients than the female controls. The increase in DHEA levels in female patients is likely an effect of the hypothalamic-pituitary-adrenal (HPA) axis. In contrast, cortisol levels in male patients were higher than the control group, while testosterone levels were lower. The increased cortisol and decreased testosterone levels in male patients likely involves the hypothalamic-pituitary-gonadal (HPG) axis. CONCLUSION: These findings suggest that neurosteroid levels in patients with OCD should be investigated together with the HPA and HPG axes in future studies.

Psychiatry Investigation . 2015; 12(4): 538-544.

Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma.

Chronic traumatic encephalopathy (CTE) is a form of neurodegeneration believed to result from repeated head injuries. Originally termed dementia pugilistica because of its association with boxing, the neuropathology of CTE was first described by Corsellis in 1973 in a case series of 15 retired boxers. CTE has recently been found to occur after other causes of repeated head trauma, suggesting that any repeated blows to the head, such as those that occur in American football, hockey, soccer, professional wrestling, and physical abuse, can also lead to neurodegenerative changes. These changes often include cerebral atrophy, cavum septi pellucidi with fenestrations, shrinkage of the mammillary bodies, dense tau immunoreactive inclusions (neurofibrillary tangles, glial tangles, and neuropil neurites), and, in some cases, a TDP-43 proteinopathy. In association with these pathologic changes, disordered memory and executive functioning, behavioral and personality disturbances (eg, apathy, depression, irritability, impulsiveness, suicidality), parkinsonism, and, occasionally, motor neuron disease are seen in affected individuals. No formal clinical or pathologic diagnostic criteria for CTE currently exist, but the distinctive neuropathologic profile of the disorder lends promise for future research into its prevention, diagnosis, and treatment.

Clin Sports Med . 2011 Jan; 30(1): 179-188, xi.

Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention.

Traumatic brain injury (TBI) remains one of the leading causes of mortality and morbidity worldwide, yet despite extensive efforts to develop neuroprotective therapies for this devastating disorder there have been no successful outcomes in human clinical trials to date. Following the primary mechanical insult TBI results in delayed secondary injury events due to neurochemical, metabolic and cellular changes that account for many of the neurological deficits observed after TBI. The development of secondary injury represents a window of opportunity for therapeutic intervention to prevent progressive tissue damage and loss of function after injury. To establish effective neuroprotective treatments for TBI it is essential to fully understand the complex cellular and molecular events that contribute to secondary injury. Neuroinflammation is well established as a key secondary injury mechanism after TBI, and it has been long considered to contribute to the damage sustained following brain injury. However, experimental and clinical research indicates that neuroinflammation after TBI can have both detrimental and beneficial effects, and these likely differ in the acute and delayed phases after injury. The key to developing future anti-inflammatory based neuroprotective treatments for TBI is to minimize the detrimental and neurotoxic effects of neuroinflammation while promoting the beneficial and neurotrophic effects, thereby creating optimal conditions for regeneration and repair after injury. This review outlines how post-traumatic neuroinflammation contributes to secondary injury after TBI, and discusses the complex and varied responses of the primary innate immune cells of the brain, microglia, to injury. In addition, emerging experimental anti-inflammatory and multipotential drug treatment strategies for TBI are discussed, as well as some of the challenges faced by the research community to translate promising neuroprotective drug treatments to the clinic.

Brain Behav Immun . 2012 Nov; 26(8): 1191-1201.

Growth hormone and prolactin regulate human neural stem cell regenerative activity.

We have previously shown that the growth hormone (GH)/prolactin (PRL) axis has a significant role in regulating neuroprotective and/or neurorestorative mechanisms in the brain and that these effects are mediated, at least partly, via actions on neural stem cells (NSCs). Here, using NSCs with properties of neurogenic radial glia derived from fetal human forebrains, we show that exogenously applied GH and PRL promote the proliferation of NSCs in the absence of epidermal growth factor or basic fibroblast growth factor. When applied to differentiating NSCs, they both induce neuronal progenitor proliferation, but only PRL has proliferative effects on glial progenitors. Both GH and PRL also promote NSC migration, particularly at higher concentrations. Since human GH activates both GH and PRL receptors, we hypothesized that at least some of these effects may be mediated via the latter. Migration studies using receptor-specific antagonists confirmed that GH signals via the PRL receptor promote migration. Mechanisms of receptor signaling in NSC proliferation, however, remain to be elucidated. In summary, GH and PRL have complex stimulatory and modulatory effects on NSC activity and as such may have a role in injury-related recovery processes in the brain.

Neuroscience . 2011 Sep 8; 190: 409-427.

Progesterone protects blood-brain barrier function and improves neurological outcome following traumatic brain injury in rats.

Inflammatory responses are associated with blood-brain barrier (BBB) dysfunction and neurological deficits following traumatic brain injury (TBI). The aim of the present study was to investigate the effects of progesterone on the expression of the inflammatory mediators prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), nuclear factor kappaB (NF-kappaB) and tumor necrosis factor-alpha (TNF-alpha) in the brain, BBB permeability, cerebral edema and neurological outcome, as well as to explore the mechanism of its neuroprotective effect. In this study, male rats were randomly divided into three groups: a sham-operated group (SHAM), a TBI group (TBI) and a progesterone treatment group (TBI-PROG). The TBI model was established using a modified Feeney's weight-dropping method. Brain samples were extracted 24 h following injury. The expression levels of COX-2 and NF-kappaB were examined using immunohistochemistry, whilst the expression levels of PGE2 and TNF-alpha were detected by enzyme-linked immunosorbent assay. BBB permeability was analyzed using Evans blue and cerebral edema was determined using the dry-wet method. The neurological outcome was evaluated using the modified neurological severity score test. The results revealed that progesterone treatment significantly reduced post-injury inflammatory response, brain edema and Evans blue dye extravasation, and improved neurological scores compared with those in the TBI group. In conclusion, the inhibition of inflammation may be an important mechanism by which progesterone protects the BBB and improves neurological outcome.

Exp Ther Med . 2014 Sep; 8(3): 1010-1014.

Gender, sex steroid hormones, and Alzheimer's disease.

Age-related loss of sex steroid hormones is a established risk factor for the development of Alzheimer's disease (AD) in women and men. While the relationships between the sex steroid hormones and AD are not fully understood, findings from both human and experimental paradigms indicate that depletion of estrogens in women and androgens in men increases vulnerability of the aging brain to AD pathogenesis. We review evidence of a wide range of beneficial neural actions of sex steroid hormones that may contribute to their hypothesized protective roles against AD. Both estrogens and androgens exert general neuroprotective actions relevant to a several neurodegenerative conditions, some in a sex-specific manner, including protection from neuron death and promotion of select aspects of neural plasticity. In addition, estrogens and androgens regulate key processes implicated in AD pathogenesis, in particular the accumulation of beta-amyloid protein. We discuss evidence of hormone-specific mechanisms related to the regulation of the production and clearance of beta-amyloid as critical protective pathways. Continued elucidation of these pathways promises to yield effective hormone-based strategies to delay development of AD.

Horm Behav . 2013 Feb; 63(2): 301-307.

The neuroprotective effects of progesterone on traumatic brain injury: current status and future prospects.

Traumatic brain injury is the leading cause of morbidity and mortality in young adults. The secondary injury in traumatic brain injury consists of a complex cascade of processes that simultaneously react to the primary injury to the brain. This cascade has been the target of numerous therapeutic agents investigated over the last 30 years, but no neuroprotective treatment option is currently available that improve neurological outcome after traumatic brain injury. Progesterone has long been considered merely a female reproductive hormone. Numerous studies, however, show that progesterone has substantial pleiotropic properties as a neuroprotective agent in both animal models and humans. Here, we review the increasing evidence that progesterone can act as a neuroprotective agent to treat traumatic brain injury and the mechanisms underlying these effects. Additionally, we discuss the current progress of clinical studies on the application of progesterone in the treatment of traumatic brain injuries.

Acta Pharmacol Sin . 2013 Dec; 34(12): 1485-1490.