Your Trusted Brand for Over 35 Years

Life Extension Magazine

<< Back to May 2017

Arterial protect, Oral probiotics, Glycation, and Cognitive decline

May 2017

Cognitive decline

Protein requirement of elderly women: nitrogen balance responses to three levels of protein intake.

BACKGROUND: For elderly women, insufficient data exist to assess the accuracy of the assumed mean protein requirement of 0.6 g of protein x kg(-1) x day(-1), and the adequacy of the current Recommended Dietary Allowance (RDA) of 0.8 g of protein x kg(-1) x day(-1). The aims of this study were to assess the mean protein requirement and suggested safe and adequate protein intake (protein allowance) of elderly women using a shorter-term nitrogen balance protocol. METHODS: During three separate 18-day trials, 11 elderly women (age range, 70-81 years) were randomly fed eucaloric diets designed to provide either 0.50, 0.75, or 1.00 g of protein x kg(-1) x day(-1). Nitrogen balance was determined at Weeks 2 and 3 (Days 7-10 and 14-17, respectively) of each trial using data from total nitrogen analyses of duplicate food composites, 24-hour urine collections, and stool collections. The mean protein requirement was calculated using linear regression of individual women's data from all three trials and inverse prediction. RESULTS: At protein intakes of 0.53 +/- 0.02, 0.76 +/- 0.02, or 1.06 +/- 0.05 g of protein x kg(-1) x day(-1), net nitrogen balances during Week 2 were -14.5 +/- 3.1, 3.8 +/- 2.5 and 23.4 +/- 3.3 mg of nitrogen x kg(-1) x day(-1), respectively, for these body weight- and body composition-stable women. At Week 3, the net nitrogen balances were -0.1 +/- 2.7, 8.5 +/- 3.6 and 42.0 +/- 3.0 mg of nitrogen x kg(-1) x day(-1). From Week 2 to Week 3, shifts to more positive nitrogen balances occurred due to decreases in urinary nitrogen excretion. The mean protein requirement at Week 2 was calculated to be 0.70 +/- 0.09 g of protein. kg(-1) x day(-1) (coefficient of variation [CV] = 13%) and at Week 3 was calculated to be 0.56 +/- 0.09 g of protein x kg(-1) x day(-1) (CV = 17%). From these data, an adequate protein allowance was estimated to be greater than the RDA at Week 2 (0.90 g of protein x kg(-1) x day [d](-1)), and not different than the RDA at Week 3 (0.76 g of protein x kg(-1) x d(-1)). CONCLUSIONS: The decrease over time in urinary nitrogen excretion from Week 2 to Week 3 suggests that these elderly women did not achieve a metabolic steady state during this shorter-term nitrogen balance study. Collectively, these data suggest that the total protein needs of elderly women are at or above the current RDA for protein. However, the results of this study indicate that shorter-term nitrogen balance protocols are insufficient to firmly establish the RDA for protein of elderly women, and further research is required using alternative criteria measures.

J Gerontol A Biol Sci Med Sci. 2001 Nov;56 (11):M724-30

Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 1P-MRS study of oral creatine ingestion.

Recent human isolated muscle fiber studies suggest that phosphocreatine (PCr) and creatine (Cr) concentrations play a role in the regulation of mitochondrial respiration rate. To determine whether similar regulatory mechanisms are present in vivo, this study examined the relationship between skeletal muscle mitochondrial respiration rate and end-exercise PCr, Cr, PCr-to-Cr ratio (PCr/Cr), ADP, and pH by using (31)P-magnetic resonance spectroscopy in 16 men and women (36.9 +/- 4.6 yr). The initial PCr resynthesis rate and time constant (T(c)) were used as indicators of mitochondrial respiration after brief (10-12 s) and exhaustive (1-4 min) dynamic knee extension exercise performed in placebo and creatine-supplemented conditions. The results show that the initial PCr resynthesis rate has a strong relationship with end-exercise PCr, Cr, and PCr/Cr (r > 0.80, P < 0.001), a moderate relationship with end-exercise ADP (r = 0.77, P < 0.001), and no relationship with end-exercise pH (r = -0.14, P = 0.34). The PCr T(c) was not as strongly related to PCr, Cr, PCr/Cr, and ADP (r < 0.77, P < 0.001-0.18) and was significantly influenced by end-exercise pH (r = -0.43, P < 0.01). These findings suggest that end-exercise PCr and Cr should be taken into consideration when PCr recovery kinetics is used as an indicator of mitochondrial respiration and that the initial PCr resynthesis rate is a more reliable indicator of mitochondrial respiration compared with the PCr T(c).

J Appl Physiol (1985). 2004 Jun;96(6):2288-92

Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?

Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington's Disease and Parkinson's Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies.

Neurosci Biobehav Rev. 2012 May;36(5):1442-62

The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength.

Our purpose was to assess muscular adaptations during 6 weeks of resistance training in 36 males randomly assigned to supplementation with whey protein (W; 1.2 g/kg/day), whey protein and creatine monohydrate (WC; 0.1 g/kg/day), or placebo (P; 1.2 g/kg/day maltodextrin). Measures included lean tissue mass by dual energy x-ray absorptiometry, bench press and squat strength (1-repetition maximum), and knee extension/flexion peak torque. Lean tissue mass increased to a greater extent with training in WC compared to the other groups, and in the W compared to the P group (p < .05). Bench press strength increased to a greater extent for WC compared to W and P (p < .05). Knee extension peak torque increased with training for WC and W (p < .05), but not for P. All other measures increased to a similar extent across groups. Continued training without supplementation for an additional 6 weeks resulted in maintenance of strength and lean tissue mass in all groups. Males that supplemented with whey protein while resistance training demonstrated greater improvement in knee extension peak torque and lean tissue mass than males engaged in training alone. Males that supplemented with a combination of whey protein and creatine had greater increases in lean tissue mass and bench press than those who supplemented with only whey protein or placebo. However, not all strength measures were improved with supplementation, since subjects who supplemented with creatine and/or whey protein had similar increases in squat strength and knee flexion peak torque compared to subjects who received placebo.

Int J Sport Nutr Exerc Metab. 2001 Sep;11 (3): 349-64M

Influence of the protein digestion rate on protein turnover in young and elderly subjects.

It has long been recognized that numerous dietary parameters, such as the amount and type of protein and nonprotein energy sources, affect protein metabolism. More recently, we demonstrated that the protein digestion rate is an independent factor regulating postprandial protein gain. Indeed, in young men, using a non-steady-state approach and intrinsically labeled milk protein fractions [whey protein (WP) and casein (CAS)] we showed that a slow digested dietary protein (CAS) induced a greater protein gain than a fast one (WP). The mechanisms of this gain also differed according to the protein rate of digestion. WP stimulated amino acid oxidation and protein synthesis without modifying proteolysis, whereas CAS increased amino acid oxidation and protein synthesis to a lesser extent and strongly inhibited proteolysis. These results led to the concept of "slow" and "fast" protein and were confirmed by further experiments during which the meals tested presented different digestion rates but were otherwise identical in terms of amino acid profile. We also analyzed the effects of fat and carbohydrates added to CAS and WP. Our preliminary results suggest that added nonprotein energy sources to CAS and WP attenuated the differences in both the protein digestion rate and protein gain. Finally, and in contrast to young subjects, a "fast" protein may be more beneficial than a "slow" one in elderly subjects, to limit body protein loss. However, long-term studies are needed to confirm this age-related effect.

J Nutr. 2002 Oct;132(10):3228S-33S

Co-ingestion of protein and leucine stimulates muscle protein synthesis rates to the same extent in young and elderly lean men.

BACKGROUND: The progressive loss of skeletal muscle mass with aging is attributed to a disruption in the regulation of skeletal muscle protein turnover. OBJECTIVE: We investigated the effects on whole-body protein balance and mixed-muscle protein synthesis rates of the ingestion of carbohydrate with or without protein and free leucine after simulated activities of daily living. DESIGN: Eight elderly (75 +/- 1 y) and 8 young (20 +/- 1 y) lean men were randomly assigned to 2 crossover experiments in which they consumed either carbohydrate (CHO) or carbohydrate plus protein and free leucine (CHO+Pro+Leu) after performing 30 min of standardized activities of daily living. Primed, continuous infusions with L-[ring-13C6]phenylalanine and L-[ring-2H2]tyrosine were applied, and blood and muscle samples were collected to assess whole-body protein turnover and the protein fractional synthetic rate in the vastus lateralis muscle over a 6-h period. RESULTS: Whole-body phenylalanine and tyrosine flux were significantly higher in the young than in the elderly men (P < 0.01). Protein balance was negative in the CHO experiment but positive in the CHO+Pro+Leu experiment in both groups. Mixed-muscle protein synthesis rates were significantly greater in the CHO+Pro+Leu than in the CHO experiment in both the young (0.082 +/- 0.005%/h and 0.060 +/- 0.005%/h, respectively; P < 0.01) and the elderly (0.072 +/- 0.006%/h and 0.043 +/- 0.003%/h, respectively; P < 0.01) subjects, with no significant differences between groups. CONCLUSIONS: Co-ingestion of protein and leucine with carbohydrate after activities of daily living improves whole-body protein balance, and the increase in muscle protein synthesis rates is not significantly different between lean young and elderly men.

Am J Clin Nutr. 2006 Sep;84(3):623-32