Free Shipping on All Orders $75 Or More! Ends January 31st.

Your Trusted Brand for Over 35 Years

Health Protocols

Prostate Cancer: Overview


  1. Thomas, L. The Lives of a Cell, Second Edition 1978. New York: Penguin Books.
  2. Bastacky, S.I., Wojno, K.J., Walsh, P.C. et al. Pathological features of hereditary prostate cancer. J. Urol. 1995; 153: 987–92.
  3. Carter, B.S., Bova, G.S., Beaty, T.H. et al. Hereditary prostate cancer: epidemiologic and clinical features. J. Urol. 1993; 150: 797–802.
  4. Heisey, R.E., Carroll, J.C., Warner, E. et al. Hereditary breast cancer. Identifying and managing BRCA1 and BRCA2 carriers. Can. Fam. Physician 1999; 45: 114–24.
  5. Carter, B.S., Steinberg, G.D., Beaty, T.H. et al. Familial risk factors for prostate cancer. Cancer Surv. 1991; 11: 5–13.
  6. Carter, B.S., Beaty, T.H., Steinberg, G.D. et al. Mendelian inheritance of familial prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 3367–71.
  7. McWhorter, W.P., Hernandez, A.D., Meikle, A.W. et al. A screening study of prostate cancer in high risk families. J. Urol. 1992; 148: 826–8.
  8. Miesfeldt, S., Jones, S.M., Cohn, W. et al. Men's attitudes regarding genetic testing for hereditary prostate cancer risk. Urology 2000; 55: 46–50.
  9. Royal, C., Baffoe-Bonnie, A., Kittles, R. et al. Recruitment experience in the first phase of the African American Hereditary Prostate Cancer (AAHPC) study. Ann. Epidemiol. 2000; 10: S68–S77.
  10. Sellers, T.A., Potters, L., Rich, S.S. et al. Familial clustering of cancers of the breast and prostate in a population-based sample of postmenopausal women. Proc. Annu. Meet. Am. Assoc. Cancer Res. 1994; 35: A1724.
  11. Liede, A., Metcalfe, K., Hanna, D. et al. Evaluation of the needs of male carriers of mutations in BRCA1 or BRCA2 who have undergone genetic counseling. Am. J. Hum. Genet. 2000; 67: 1494–1504.
  12. Fasouliotis, S.J., Schenker, J.G. BRCA1 and BRCA2 gene mutations: decision-making dilemmas concerning testing and management. Obstet. Gynecol. Surv. 2000; 55: 373–84.
  13. Heinig, J., Jackisch, C., Rody, A. et al. Clinical management of breast cancer in males: a report of four cases. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002; 102: 67–73.
  14. Gann, P.H., Ma, J., Giovannucci, E. et al. Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res. 1999; 59: 1225–30.
  15. Giovannucci, E., Ascherio, A., Rimm, E.B. et al. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 1995; 87: 1767–76.
  16. Gerster, H. The potential role of lycopene for human health. J. Am. Coll. Nutr. 1997; 16: 109–26.
  17. Agarwal, S., Rao, A.V. Tomato lycopene and its role in human health and chronic diseases. CMAJ 2000; 163: 739–44.
  18. Heber, D., Lu, Q.Y. Overview of mechanisms of action of lycopene. Exp. Biol. Med. 2002; 227: 920–3.
  19. Arab, L., Steck, S. Lycopene and cardiovascular disease. Am. J. Clin. Nutr. 2000; 71: 1691S–1695S; discussion, 1696S–1697S.
  20. Bosetti, C., Tzonou, A., Lagiou, P. et al. Fraction of prostate cancer incidence attributed to diet in Athens, Greece. Eur. J. Cancer Prev. 2000; 9: 119–23.
  21. Clinton, S.K., Emenhiser, C., Schwartz, S.J. et al. cis-trans lycopene isomers, carotenoids, and retinol in the human prostate. Cancer Epidemiol. Biomarkers Prev. 1996; 5: 823–33.
  22. van Breemen, R.B., Xu, X., Viana, M.A. et al. Liquid chromatography-mass spectrometry of cis- and all-trans-lycopene in human serum and prostate tissue after dietary supplementation with tomato sauce. J. Agric. Food Chem. 2002; 50: 2214–9.
  23. Giovannucci, E. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J. Natl. Cancer Inst. 1999; 91: 317–31.
  24. Lu, Q.Y., Hung, J.C., Heber, D. et al. Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiol. Biomarkers Prev. 2001; 10: 749–56.
  25. Giovannucci, E. A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Exp. Biol. Med. 2002; 227: 852–9.
  26. Giovannucci, E., Rimm, E.B., Liu, Y. et al. A prospective study of tomato products, lycopene, and prostate cancer risk. J. Natl. Cancer Inst. 2002; 94: 391–8.
  27. Blumenfeld, A.J., Fleshner, N., Casselman, B. et al. Nutritional aspects of prostate cancer: a review. Can. J. Urol. 2000; 7: 927–35; discussion, 936.
  28. Mucci, L.A., Tamimi, R., Lagiou, P. et al. Are dietary influences on the risk of prostate cancer mediated through the insulin-like growth factor system? BJU Int. 2001; 87: 814–20.
  29. Signorello, L.B., Kuper, H., Lagiou, P. et al. Lifestyle factors and insulin-like growth factor 1 levels among elderly men. Eur. J. Cancer. Prev. 2000; 9: 173–8.
  30. Wang, Y., Corr, J.G., Thaler, H.T. et al. Decreased growth of established human prostate LNCaP tumors in nude mice fed a low-fat diet. J. Natl. Cancer Inst. 1995; 87: 1456–62.
  31. Mukherjee, P., Sotnikov, A.V., Mangian, H.J. et al. Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J. Natl. Cancer Inst. 1999; 91: 512–23.
  32. Chan, J.M., Stampfer, M.J., Giovannucci, E. et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998; 279: 563–6.
  33. Cohen, P., Peehl, D.M., Lamson, G. et al. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins in primary cultures of prostate epithelial cells. J. Clin. Endocrinol. Metab. 1991; 73: 401–7.
  34. Nakao-Hayashi, J., Ito, H., Kanayasu, T. et al. Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells. Atherosclerosis 1992; 92: 141–9.
  35. Huynh, H., Seyam, R.M., Brock, G.B. Reduction of ventral prostate weight by finasteride is associated with suppression of insulin-like growth factor I (IGF-I) and IGF-I receptor genes and with an increase in IGF binding protein 3. Cancer Res. 1998; 58: 215–8.
  36. Miyake, H., Hara, I., Yamanaka, K. et al. Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 1999; 39: 123–9.
  37. du Toit, P.J., van Aswegen, C.H., du Plessis, D.J. The effect of essential fatty acids on growth and urokinase-type plasminogen activator production in human prostate DU-145 cells. Prostaglandins Leukot. Essent. Fatty Acids 1996; 55: 173–7.
  38. Sears, B. The Omega Rx Zone: The Miracle of High-Dose Fish Oil, First Edition 2002. New York: HarperCollins.
  39. Nie, D., Che, M., Grignon, D. et al. Role of eicosanoids in prostate cancer progression. Cancer Metastasis Rev. 2001; 20: 195–206.
  40. Xu, X.C. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs 2002; 13: 127–37.
  41. Gupta,S., Srivastava, M., Ahmad, N. et al. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 2001; 91: 737–43.
  42. Fujita, H., Koshida, K., Keller, E.T. et al. Cyclooxygenase-2 promotes prostate cancer progression. Prostate 2002; 53: 232–40.
  43. Attiga, F.A., Fernandez, P.M., Weeraratna, A.T. et al. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res. 2000; 60: 4629–37.
  44. Kirschenbaum, A., Liu, X., Yao, S. et al. The role of cyclooxygenase-2 in prostate cancer. Urology 2001; 58: 127–31.
  45. Tjandrawinata, R.R., Dahiya, R., Hughes-Fulford, M. Induction of cyclooxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br. J. Cancer 1997; 75: 1111–8.
  46. Ghosh, J., Myers, C.E. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 13182–7.
  47. Ghosh, J., Myers, C.E. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem. Biophys. Res. Commun. 1997; 235: 418–23.
  48. Ghosh, J., Myers, C.E., Jr. Arachidonic acid metabolism and cancer of the prostate. Nutrition 1998; 14: 48–9.
  49. Myers, C.E., Ghosh, J. Lipoxygenase inhibition in prostate cancer. Eur. Urol. 1999; 35: 395–8.
  50. Barham, J.B., Edens, M.B., Fonteh, A.N. et al. Addition of eicosapentaenoic acid to gamma-linolenic acid-supplemented diets prevents serum arachidonic acid accumulation in humans. J. Nutr. 2000; 130: 1925–31.
  51. Carollo, M., Parente, L., D'Alessandro, N. Dexamethasone-induced cytotoxic activity and drug resistance effects in androgen-independent prostate tumor PC-3 cells are mediated by lipocortin 1. Oncol. Res. 1998; 10: 245–54.
  52. Harvei, S., Bjerve, K.S., Tretli, S. et al. Prediagnostic level of fatty acids in serum phospholipids: omega-3 and omega-6 fatty acids and the risk of prostate cancer. Int. J. Cancer 1997; 71: 545–51.
  53. Brooks, J.D., Metter, E.J., Chan, D.W. et al. Plasma selenium level before diagnosis and the risk of prostate cancer development. J. Urol. 2001; 166: 2034–8.
  54. Duffield-Lillico, A.J., Reid, M.E., Turnbull, B.W. et al. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol. Biomarkers Prev. 2002; 11: 630–9.
  55. Clark, L.C., Combs, G.F., Jr., Turnbull, B.W. et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996; 276: 1957–63.
  56. Venkateswaran, V., Klotz, L.H., Fleshner, N.E. Selenium modulation of cell proliferation and cell cycle biomarkers in human prostate carcinoma cell lines. Cancer Res. 2002; 62: 2540–5.
  57. Vadgama, J.V., Wu, Y., Shen, D. et al. Effect of selenium in combination with Adriamycin or Taxol on several different cancer cells. Anticancer Res. 2000; 20: 1391–1414.
  58. Helzlsouer, K.J., Huang, H.Y., Alberg, A.J. et al. Association between alpha-tocopherol, gamma-tocopherol, selenium, and subsequent prostate cancer. J. Natl. Cancer Inst. 2000; 92: 2018–23.
  59. Zhang, Y., Ni, J., Messing, E.M. et al. Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells. Proc. Natl. Acad. Sci. 2002; 99: 7408–13.
  60. Heinonen, O.P., Albanes, D., Virtamo, J. et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J. Natl. Cancer Inst. 1998; 90: 440–6.
  61. Chan, J.M., Stampfer, M.J., Ma, J. et al. Supplemental vitamin E intake and prostate cancer risk in a large cohort of men in the United States. Cancer Epidemiol. Biomarkers Prev. 1999; 8: 893–9.
  62. Hirayama, T. A large scale cohort study on cancer risks by diet—with special reference to the risk reducing effects of green-yellow vegetable consumption. Princess Takamatsu Symp. 1985; 16: 41–53.
  63. Woodson, K., Triantos, S., Hartman, T. et al. Long-term alpha-tocopherol supplementation is associated with lower serum vascular endothelial growth factor levels. Anticancer Res. 2002; 22: 375–8.
  64. Fleshner, N., Fair, W.R., Huryk, R. et al. Vitamin E inhibits the high-fat diet promoted growth of established human prostate LNCaP tumors in nude mice. J. Urol. 1999; 161: 1651–4.
  65. Chan, J.M., Giovannucci, E., Andersson, S.O. et al. Dairy products, calcium, phosphorous, vitamin D, and risk of prostate cancer (Sweden). Cancer Causes Control 1998; 9: 559–66.
  66. Chan, J.M., Stampfer, M.J., Ma, J. et al. Dairy products, calcium, and prostate cancer risk in the Physicians' Health Study. Am. J. Clin. Nutr. 2001; 74: 549–54.
  67. Giovannucci, E., Rimm, E.B., Wolk, A. et al. Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res. 1998; 58: 442–7.
  68. Stacewicz-Sapuntzakis, M., Bowen, P.E., Hussain, E.A. et al. Chemical composition and potential health effects of prunes: a functional food? Crit. Rev. Food. Sci. Nutr. 2001; 41: 251–86.
  69. Patterson, R.E., Neuhouser, M.L., White, E. et al. Cancer-related behavior of vitamin supplement users. Cancer Epidemiol. Biomarkers Prev. 1998; 7: 79–81.
  70. Rowling, J.K., Harry Potter and the Goblet of Fire, First Edition 2000, p. 723. New York: Scholastic Press.
  71. Peck, S.M. A World Waiting to Be Born. Civility Rediscovered, Second Edition 1997, p. 50. New York: Bantam Books.
  72. Gao, X., Mohideen, N., Flanigan, R.C. et al. The extent of biopsy involvement as an independent predictor of extraprostatic extension and surgical margin status in low risk prostate cancer: implications for treatment selection. J. Urol. 2000; 164: 1982–6.
  73. Narayan, P., Gajendran, V., Taylor, S.P. et al. The role of transrectal ultrasound-guided biopsy-based staging, preoperative serum prostate-specific antigen, and biopsy Gleason score in prediction of final pathologic diagnosis in prostate cancer. Urology 1995; 46: 205–12.
  74. Moul, J.W., Connelly, R.R., Perahia, B. et al. The contemporary value of pretreatment prostatic acid phosphatase to predict pathological stage and recurrence in radical prostatectomy cases. J. Urol. 1998; 159: 935–40.
  75. Dattoli, M., Wallner, K., True, L. et al. Prognostic role of serum prostatic acid phosphatase for 103Pd-based radiation for prostatic carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1999; 45: 853–6.
  76. D'Amico, A.V., Schultz, D., Silver, B. et al. The clinical utility of the percent of positive prostate biopsies in predicting biochemical outcome following external-beam radiation therapy for patients with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001; 49: 679–84.
  77. Haese, A., Graefen, M., Noldus, J. et al. Prostatic volume and ratio of free-to-total prostate specific antigen in patients with prostatic cancer or benign prostatic hyperplasia. J. Urol. 1997; 158: 2188–92.
  78. D'Amico, A.V., Propert, K.J. Prostate cancer volume adds significantly to prostate-specific antigen in the prediction of early biochemical failure after external beam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1996; 35: 273–9.
  79. D'Amico, A.V., Whittington, R., Malkowicz, S.B. et al. A prostate gland volume of more than 75 cm3 predicts for a favorable outcome after radical prostatectomy for localized prostate cancer. Urology 1998; 52: 631–6.
  80. Feneley, M.R., Landis, P., Simon, I. et al. Today men with prostate cancer have larger prostates. Urology 2000; 56: 839–42.
  81. Kaminski, J.M., Hanlon, A.L., Horwitz, E.M. et al. Relationship between prostate volume, prostate-specific antigen nadir, and biochemical control. Int. J. Radiat. Oncol. Biol. Phys. 2002; 52: 888–92.
  82. Thomas, M.D., Cormack, R., Tempany, C.M. et al. Identifying the predictors of acute urinary retention following magnetic-resonance-guided prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000; 47: 905–8.
  83. Rukstalis, D.B., Goldknopf, J.L., Crowley, E.M. et al. Prostate cryoablation: a scientific rationale for future modifications. Urology 2002; 60: 19–25.
  84. Merrick, G.S., Butler, W.M., Lief, J.H. et al. Temporal resolution of urinary morbidity following prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000; 47: 121–8.
  85. Merrick, G.S., Butler, W.M., Galbreath, R.W. et al. Relationship between the transition zone index of the prostate gland and urinary morbidity after brachytherapy. Urology 2001; 57: 524–9.
  86. Steele, G.S., Sullivan, M.P., Sleep, D.J. et al. Combination of symptom score, flow rate and prostate volume for predicting bladder outflow obstruction in men with lower urinary tract symptoms. J. Urol. 2000; 164: 344–8.
  87. Wang, H., Wallner, K., Sutlief, S. et al. Transperineal brachytherapy in patients with large prostate glands. Int. J. Cancer 2000; 90: 199–205.
  88. Daniell, H.W. Osteoporosis due to androgen deprivation therapy in men with prostate cancer. Urology 2001; 58: 101–7.
  89. Neugut, A.I., Rosenberg, D.J., Ahsan, H. et al. Association between coronary heart disease and cancers of the breast, prostate, and colon. Cancer Epidemiol. Biomarkers Prev. 1998; 7: 869–73.
  90. Johnstone, P.A., Powell, C.R., Riffenburgh, R. et al. Second primary malignancies in T1-3N0 prostate cancer patients treated with radiation therapy with 10-year followup. J. Urol. 1998; 159: 946–9.
  91. Vollmer, R.T., Egawa, S., Kuwao, S. et al. The dynamics of prostate specific antigen during watchful waiting of prostate carcinoma: a study of 94 Japanese men. Cancer 2002; 94: 1692–8.
  92. Arai, Y., Egawa, S., Kuwao, S. et al. The role of volume-weighted mean nuclear volume in predicting tumour biology and clinical behaviour in patients with prostate cancer undergoing watchful waiting. BJU Int. 2001; 88: 909–14.
  93. Borre, M., Offersen, B.V., Nerstrom, B. et al. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br. J. Cancer 1998; 78: 940–4.
  94. Borre, M., Stausbol-Gron, B., Overgaard, J. p53 accumulation associated with bcl-2, the proliferation marker MIB-1 and survival in patients with prostate cancer subjected to watchful waiting. J. Urol. 2000; 164: 716–21.
  95. Borre, M., Nerstrom, B., Overgaard, J. Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. Clin. Cancer Res. 2000; 6: 1882–90.
  96. Choo, R., Klotz, L., Danjoux, C. et al. Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J. Urol. 2002; 167: 1664–9.
  97. McLaren, D.B., McKenzie, M., Duncan, G. et al. Watchful waiting or watchful progression? Prostate specific antigen doubling times and clinical behavior in patients with early untreated prostate carcinoma. Cancer 1998; 82: 342–8.
  98. Begg, C.B., Riedel, E.R., Bach, P.B. et al. Variations in morbidity after radical prostatectomy. N. Engl. J. Med. 2002; 346: 1138–44.
  99. Noldus, J., Michl, U., Graefen, M. et al. Nerve-sparing radical retropubic prostatectomy. Results of a patient survey. Urologe A 2001; 40: 102–6.
  100. Keetch, D.W., McMurtry, J.M., Smith, D.S. et al. Prostate specific antigen density versus prostate specific antigen slope as predictors of prostate cancer in men with initially negative prostatic biopsies. J. Urol. 1996; 156: 428–31.
  101. Maeda, H., Arai, Y., Okubo, K. et al. Value of the free to total prostate specific antigen ratio and prostate specific antigen density for detecting prostate cancer in Japanese patients. Int. J. Urol. 1998; 5: 343–8.
  102. Chakrabarti, S., Raha, K., Bhunia, C.L. et al. The usefulness of prostate specific antigen density as a screening method for prostatic carcinoma. J. Indian Med. Assoc. 2001; 99: 627–8, 630.
  103. Oesterling, J.E., Brendler, C.B., Epstein, J.I. et al. Correlation of clinical stage, serum prostatic acid phosphatase and preoperative Gleason grade with final pathological stage in 275 patients with clinically localized adenocarcinoma of the prostate. J. Urol. 1987; 138: 92–8.
  104. Partin, A.W., Yoo, J., Carter, H.B. et al. The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J. Urol. 1993; 150: 110–4.
  105. McNeal, J.E. The zonal anatomy of the prostate. Prostate 1981; 2: 35–49.
  106. Lee, F., Torp-Pedersen, S.T., Siders, D.B. et al. The use of transrectal ultrasound in the study of normal and abnormal anatomy of the prostate gland. In Early Stage Prostate Cancer: Diagnosis and Choice of Therapy, First Edition, 1989, pp. 23–36. Labrie, F., Dupont, A., Lee, F., Eds. Amsterdam: Elsevier Science.
  107. Djavan, B., Remzi, M., Zlotta, A.R. et al. Combination and multivariate analysis of PSA-based parameters for prostate cancer prediction. Tech. Urol. 1999; 5: 71–6.
  108. Djavan, B., Zlotta, A., Kratzik, C. et al. PSA, PSA density, PSA density of transition zone, free/total PSA ratio, and PSA velocity for early detection of prostate cancer in men with serum PSA 2.5 to 4.0 ng/mL. Urology 1999; 54: 517–22.
  109. Djavan, B., Zlotta, A.R., Remzi, M. et al. Total and transition zone prostate volume and age: how do they affect the utility of PSA-based diagnostic parameters for early prostate cancer detection? Urology 1999; 54: 846–52.
  110. Carter, H.B., Pearson, J.D. Prostate-specific antigen velocity and repeated measures of prostate-specific antigen. Urol. Clin. North Am. 1997; 24: 333–8.
  111. Barak, M., Cohen, M., Mecz, Y. et al. The additional value of free prostate specific antigen to the battery of age-dependent prostate-specific antigen, prostate-specific antigen density and velocity. Eur. J. Clin. Chem. Clin. Biochem. 1997; 35: 475–81.
  112. Vollmer, R.T., Dawson, N.A., Vogelzang, N.J. The dynamics of prostate specific antigen in hormone refractory prostate carcinoma: an analysis of cancer and leukemia group B study 9181 of megestrol acetate. Cancer 1998; 83: 1989–94.
  113. Carter, H.B., Pearson, J.D., Waclawiw, Z. et al. Prostate-specific antigen variability in men without prostate cancer: effect of sampling interval on prostate-specific antigen velocity. Urology 1995; 45: 591–6.
  114. Kadmon, D., Weinberg, A.D., Williams, R.H. et al. Pitfalls in interpreting prostate specific antigen velocity. J. Urol. 1996; 155: 1655–7.
  115. Carter, H.B., Pearson, J.D. PSA velocity for the diagnosis of early prostate cancer. A new concept. Urol. Clin. North Am. 1993; 20: 665–70.
  116. Egawa, S., Suyama, K., Takashima, R. et al. Prospective evaluation of prostate cancer detection by prostate-specific antigen-related parameters. Int. J. Urol. 1999; 6: 493–501.
  117. Hanks, G.E., Hanlon, A.L., Lee, W.R. et al. Pretreatment prostate-specific antigen doubling times: clinical utility of this predictor of prostate cancer behavior. Int. J. Radiat. Oncol. Biol. Phys. 1996; 34: 549–53.
  118. Stephenson, A.J., Aprikian, A.G., Souhami, L. et al. Utility of PSA doubling time in follow-up of untreated patients with localized prostate cancer. Urology 2002; 59: 652–6.
  119. Fowler, J.E., Jr., Pandey, P., Seaver, L.E. et al. Prostate specific antigen regression and progression after androgen deprivation for localized and metastatic prostate cancer. J. Urol. 1995; 153: 1860–5.
  120. Pollack, A., Zagars, G.K., el-Naggar, A.K. et al. Relationship of tumor DNA-ploidy to serum prostate-specific antigen doubling time after radiotherapy for prostate cancer. Urology 1994; 44: 711–8.
  121. Hanlon, A.L., Diratzouian, H., Hanks, G.E. Posttreatment prostate-specific antigen nadir highly predictive of distant failure and death from prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2002 Jun 1; 53(2): 297–303.
  122. Lee, W.R., Hanks, G.E., Hanlon, A. Increasing prostate-specific antigen profile following definitive radiation therapy for localized prostate cancer: clinical observations. J. Clin. Oncol. 1997; 15: 230–8.
  123. Roberts, S.G., Blute, M.L., Bergstralh, E.J. et al. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clin. Proc. 2001; 76: 576–81.
  124. Zagars, G.K., Pollack, A. Kinetics of serum prostate-specific antigen after external beam radiation for clinically localized prostate cancer. Radiother. Oncol. 1997; 44: 213–21.
  125. Tarle, M., Frkovic-Grazio, S., Kraljic, I. et al. A more objective staging of advanced prostate cancer—routine recognition of malignant endocrine structures: the assessment of serum TPS, PSA, and NSE values. Prostate 1994; 24: 143–8.
  126. Tarle, M., Rados, N. Investigation on serum neurone-specific enolase in prostate cancer diagnosis and monitoring: comparative study of a multiple tumor marker assay. Prostate 1991; 19: 23–33.
  127. Aihara, M., Lebovitz, R.M., Wheeler, T.M. et al. Prostate specific antigen and Gleason grade: an immunohistochemical study of prostate cancer. J. Urol. 1994; 151: 1558–64.
  128. Bidart, J.M., Thuillier, F., Augereau, C. et al. Kinetics of serum tumor marker concentrations and usefulness in clinical monitoring. Clin. Chem. 1999; 45: 1695–1707.
  129. Oremek, G.M., Seiffert, U.B. Physical activity releases prostate-specific antigen (PSA) from the prostate gland into blood and increases serum PSA concentrations. Clin. Chem. 1996; 42: 691–5.
  130. Leventhal, E.K., Rozanski, T.A., Morey, A.F. et al. The effects of exercise and activity on serum prostate specific antigen levels. J. Urol. 1993; 150: 893–4.
  131. Piironen, T., Nurmi, M., Irjala, K. et al. Measurement of circulating forms of prostate-specific antigen in whole blood immediately after venipuncture: implications for point-of-care testing. Clin. Chem. 2001; 47: 703–11.
  132. Tchetgen, M.B., Song, J.T., Strawderman, M. et al. Ejaculation increases the serum prostate-specific antigen concentration. Urology 1996; 47: 511–6.
  133. Crawford, E.D., Chia, D., Andriole, G. et al. PSA changes as related to the initial PSA: data from the prostate, lung, colorectal and ovarian cancer (PLCO) screening trial. Proc. Am. Soc. Clin. Oncol. 2001; 20: 177a.
  134. Harris, C.H., Dalkin, B.L., Martin, E. et al. Prospective longitudinal evaluation of men with initial prostate specific antigen levels of 4.0 ng/mL or less. J. Urol. 1997; 157: 1740–3.
  135. Fowler, J.E., Jr., Bigler, S.A., Miles, D. et al. Predictors of first repeat biopsy cancer detection with suspected local stage prostate cancer. J. Urol. 2000; 163: 813–8.
  136. Catalona, W.J., Partin, A.W., Finlay, J.A. et al. Use of percentage of free prostate-specific antigen to identify men at high risk of prostate cancer when PSA levels are 2.51 to 4 ng/mL and digital rectal examination is not suspicious for prostate cancer: an alternative model. Urology 1999; 54: 220–4.
  137. Stephan, C., Jung, K., Cammann, H. et al. An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: results of a 5-year investigation. Int. J. Cancer 2002; 99: 466–73.
  138. Chen, Y.T., Luderer, A.A., Thiel, R.P. et al. Using proportions of free to total prostate-specific antigen, age, and total prostate-specific antigen to predict the probability of prostate cancer. Urology 1996; 47: 518–24.
  139. Carter, H.B., Morrell, C.H., Pearson, J.D. et al. Estimation of prostatic growth using serial prostate-specific antigen measurements in men with and without prostate disease. Cancer Res. 1992; 52: 3323–8.
  140. Lujan, M., Paez, A., Sanchez, E. et al. Prostate specific antigen variation in patients without clinically evident prostate cancer. J. Urol. 1999; 162: 1311–3.
  141. Ciatto, S., Bonardi, R., Lombardi, C. et al. Analysis of PSA velocity in 1666 healthy subjects undergoing total PSA determination at two consecutive screening rounds. Int. J. Biol. Markers 2002; 17: 79–83.
  142. Imai, K., Ichinose, Y., Kubota, Y. et al. Clinical significance of prostate specific antigen for early stage prostate cancer detection. Jpn. J. Clin. Oncol. 1994; 24: 160–5.
  143. Larson, T.R., Robertson, D.W., Corica, A. et al. In vivo interstitial temperature mapping of the human prostate during cryosurgery with correlation to histopathologic outcomes. Urology 2000; 55: 547–52.
  144. Goldstein, N.S., Kestin, L.L., Vicini, F.A. et al. The influence of percentage of pre-radiation needle biopsies with adenocarcinoma and total radiation dose on the pathologic response of unfavorable prostate adenocarcinoma. Am. J. Clin. Pathol. 2002; 117: 927–34.
  145. Lankford, S.P., Pollack, A., Zagars, G.K. Prostate-specific antigen cancer volume: a significant prognostic factor in prostate cancer patients at intermediate risk of failing radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1997; 38: 327–33.
  146. Schulte, R.W., Slater, J.D., Rossi, C.J., Jr. et al. Value and perspectives of proton radiation therapy for limited stage prostate cancer. Strahlenther. Onkol. 2000; 176: 3–8.
  147. Rossi, C.J., Jr., Slater, J.D., Reyes-Molyneux, N. et al. Particle beam radiation therapy in prostate cancer: is there an advantage? Semin. Radiat. Oncol. 1998; 8: 115–23.
  148. Laramore, G.E., Krall, J.M., Thomas, F.J. et al. Fast neutron radiotherapy for locally advanced prostate cancer: results of an RTOG randomized study. Int. J. Radiat. Oncol. Biol. Phys. 1985; 11: 1621–7.
  149. Molls, M., Stadler, P., Becker, A. et al. Relevance of oxygen in radiation oncology. Mechanisms of action, correlation to low hemoglobin levels. Strahlenther. Onkol. 174(Suppl. 4): 13–6.
  150. Stadler, P., Becker, A., Feldmann, H.J. et al. Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 1999; 44: 749–54.
  151. Dennis, L.K., Lynch, C.F., Torner, J.C. Epidemiologic association between prostatitis and prostate cancer. Urology 2002; 60: 78–83.
  152. Nelson, W.G., De Marzo, A.M., Deweese, T.L. et al. Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann. N.Y. Acad. Sci. 2001; 952: 135–44.
  153. Orozco, R., O'Dowd, G., Kunnel, B. et al. Observations on pathology trends in 62,537 prostate biopsies obtained from urology private practices in the United States. Urology 1998; 51: 186–95.
  154. Han, M., Snow, P.B., Epstein, J.I. et al. A neural network predicts progression for men with Gleason score 3+4 versus 4+3 tumors after radical prostatectomy. Urology 2000; 56: 994–9.
  155. Sakr, W.A., Tefilli, M.V., Grignon, D.J. et al. Gleason score 7 prostate cancer: a heterogeneous entity? Correlation with pathologic parameters and disease-free survival. Urology 2000; 56: 730–4.
  156. Chan, T.Y., Partin, A.W., Walsh, P.C. et al. Prognostic significance of Gleason score 3+4 versus Gleason score 4+3 tumor at radical prostatectomy. Urology 2000; 56: 823–7.
  157. Partin, A.W., Mangold, L.A., Lamm, D.M. et al. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 2001; 58: 843–8.
  158. D'Amico, A.V., Whittington, R., Malkowicz, S.B. et al. A multivariable analysis of clinical factors predicting for pathological features associated with local failure after radical prostatectomy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 194; 30: 293–302.
  159. Carlson, G.D., Calvanese, C.B., Partin, A.W. An algorithm combining age, total prostate-specific antigen (PSA), and percent free PSA to predict prostate cancer: results on 4298 cases. Urology 1998; 52: 455–61.
  160. Badalament, R.A., Miller, M.C., Peller, P.A. et al. An algorithm for predicting nonorgan confined prostate cancer using the results obtained from sextant core biopsies with prostate specific antigen level. J. Urol. 1996; 156: 1375–80.
  161. Partin, A.W., Kattan, M.W., Subong, E.N. et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 1997; 277: 1445–51.
  162. Kattan, M.W., Wheeler, T.M., Scardino, P.T. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol. 1999; 17: 1499–1507.
  163. Kattan, M.W., Zelefsky, M.J., Kupelian, P.A. et al. Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J. Clin. Oncol. 2000; 18: 3352–9.
  164. Kattan, M.W., Potters, L., Blasko, J.C. et al. Pretreatment nomogram for predicting freedom from recurrence after permanent prostate brachytherapy in prostate cancer. Urology 2001; 58: 393–9.
  165. Bluestein, D.L., Bostwick, D.G., Bergstralh, E.J. et al. Eliminating the need for bilateral pelvic lymphadenectomy in select patients with prostate cancer. J. Urol. 1994; 151: 1315–20.
  166. Gilliland, F.D., Hoffman, R.M., Hamilton, A. et al. Predicting extracapsular extension of prostate cancer in men treated with radical prostatectomy: results from the population based prostate cancer outcomes study. J. Urol. 1999; 162: 1341–5.
  167. Lerner, S.E., Blute, M.L., Bergstralh, E.J. et al. Analysis of risk factors for progression in patients with pathologically confined prostate cancers after radical retropubic prostatectomy. J. Urol. 1996; 156: 137–43.
  168. Pisansky, T.M., Kozelsky, T.F., Myers, R.P. et al. Radiotherapy for isolated serum prostate specific antigen elevation after prostatectomy for prostate cancer. J. Urol. 2000; 163: 845–50.
  169. Gamito, E.J., Stone, N.N., Batuello, J.T. et al. Use of artificial neural networks in the clinical staging of prostate cancer: implications for prostate brachytherapy. Tech. Urol. 2000; 6: 60–3.
  170. Stephan, C., Cammann, H., Semjonow, A. et al. Multicenter evaluation of an artificial neural network to increase the prostate cancer detection rate and reduce unnecessary biopsies. Clin. Chem. 2002; 48: 1279–87.
  171. Ogawa, O., Egawa, S., Arai, Y. et al. Preoperative predictors for organ-confined disease in Japanese patients with stage T1c prostate cancer. Int. J. Urol. 1998; 5: 454–8.
  172. Ziada, A.M., Lisle, T.C., Snow, P.B. et al. Impact of different variables on the outcome of patients with clinically confined prostate carcinoma: prediction of pathologic stage and biochemical failure using an artificial neural network. Cancer 2001; 91: 1653–60.
  173. Tewari, A., Porter, C., Peabody, J. et al. Predictive modeling techniques in prostate cancer. Mol. Urol. 2001; 5: 147–52.
  174. Errejon, A., Crawford, E.D., Dayhoff, J. et al. Use of artificial neural networks in prostate cancer. Mol. Urol. 2001; 5: 153–8.
  175. Porter, C., O'Donnell, C., Crawford, E.D. et al. Artificial neural network model to predict biochemical failure after radical prostatectomy. Mol. Urol. 2001; 5: 159–62.
  176. Tewari, A., Issa, M., El-Galley, R. et al. Genetic adaptive neural network to predict biochemical failure after radical prostatectomy: a multi-institutional study. Mol. Urol. 2001; 5: 163–9.
  177. Babaian, R.J., Fritsche, H., Ayala, A. et al. Performance of a neural network in detecting prostate cancer in the prostate-specific antigen reflex range of 2.5 to 4.0 ng/mL. Urology 2000; 56: 1000–6.
  178. Blute, M.L., Bergstralh, E.J., Iocca, A. et al. Use of Gleason score, prostate specific antigen, seminal vesicle and margin status to predict biochemical failure after radical prostatectomy. J. Urol. 2001; 165: 119–25.
  179. Conrad, S., Graefen, M., Pichlmeier, U. et al. Systematic sextant biopsies improve preoperative prediction of pelvic lymph node metastases in patients with clinically localized prostatic carcinoma. J. Urol. 1998; 159: 2023–9.
  180. Batuello, J.T., Gamito, E.J., Crawford, E.D. et al. Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer. Urology 2001; 57: 481–5.
  181. Long, J.P., Bahn, D., Lee, F. et al. Five-year retrospective, multi-institutional pooled analysis of cancer-related outcomes after cryosurgical ablation of the prostate. Urology 2001; 57: 518–23.
  182. Critz, F.A., Williams, W.H., Levinson, A.K. et al. Simultaneous irradiation for prostate cancer: intermediate results with modern techniques. J. Urol. 2000; 164: 738–41; discussion, 741–3.
  183. Blasko, J.C., Grimm, P.D., Sylvester, J.E. et al. Palladium-103 brachytherapy for prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2000; 46: 839–50.
  184. Onik, G. Cryosurgery. Crit. Rev. Oncol. Hematol. 1996; 23: 1–24.
  185. Cohen, J.K., Miller, R.J., Rooker, G.M. et al. Cryosurgical ablation of the prostate: two-year prostate-specific antigen and biopsy results. Urology 1996; 47: 395–401.
  186. Tatsutani, K., Rubinsky, B., Onik, G. et al. Effect of thermal variables on frozen human primary prostatic adenocarcinoma cells. Urology 1996; 48: 441–7.
  187. Lee, F., Bahn, D.K., McHugh, T.A. et al. Cryosurgery of prostate cancer. Use of adjuvant hormonal therapy and temperature monitoring—a one year follow-up. Anticancer Res. 1997; 17: 1511–5.
  188. Ghafar, M.A., Johnson, C.W., De La Taille, A. et al. Salvage cryotherapy using an argon based system for locally recurrent prostate cancer after radiation therapy: the Columbia experience. J. Urol. 2001; 166: 1333–7; discussion, 1337–8.
  189. de la Taille, A., Benson, M.C., Bagiella, E. et al. Cryoablation for clinically localized prostate cancer using an argon-based system: complication rates and biochemical recurrence. BJU Int. 2000; 85: 281–6.
  190. Onik, G. Image-guided prostate cryosurgery: state of the art. Cancer Control 2001; 8: 522–31.
  191. Zisman, A., Pantuck, A.J., Cohen, J.K. et al. Prostate cryoablation using direct transperineal placement of ultrathin probes through a 17-gauge brachytherapy template-technique and preliminary results. Urology 2001; 58: 988–93.
  192. Dillioglugil, O., Leibman, B.D., Leibman, N.S. et al. Risk factors for complications and morbidity after radical retropubic prostatectomy. J. Urol. 1997; 157: 1760–7.
  193. Albertsen, P.C., Fryback, D.G., Storer, B.E. et al. The impact of co-morbidity on life expectancy among men with localized prostate cancer. J. Urol. 1996; 156: 127–32.
  194. Haban, P., Simoncic, R., Zidekova, E. et al. Role of fasting serum C-peptide as a predictor of cardiovascular risk associated with the metabolic X-syndrome. Med. Sci. Monit. 2002; 8: CR175–CR179.
  195. Bhatti, M.S., Akbri, M.Z., Shakoor, M. Lipid profile in obesity. J. Ayub Med. Coll. Abbottabad 2001; 13: 31–3.
  196. Park, R., Detrano, R., Xiang, M. et al. Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in nondiabetic individuals. Circulation 2002; 106: 2073–7.
  197. Speidl, W.S., Graf, S., Hornykewycz, S. et al. High-sensitivity C-reactive protein in the prediction of coronary events in patients with premature coronary artery disease. Am. Heart J. 2002; 144: 449–55.
  198. Albert, C.M., Ma, J., Rifai, N. et al. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 2002; 105: 2595–9.
  199. Mayser, P., Mayer, K., Mahloudjian, M. et al. A double-blind, randomized, placebo-controlled trial of n-3 versus n-6 fatty acid-based lipid infusion in atopic dermatitis. J. Parenter. Enteral. Nutr. 2002; 26: 151–8.
  200. Dewailly, E.E., Blanchet, C., Gingras, S. et al. Relations between n-3 fatty acid status and cardiovascular disease risk factors among Quebecers. Am. J. Clin. Nutr. 2001; 74: 603–11.
  201. Watkins, B.A., Li, Y., Allen, K.G. et al. Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J. Nutr. 2000; 130: 2274–84.
  202. Adams, P.B., Lawson, S., Sanigorski, A. et al. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 1996; 31(Suppl.): S157–S161.
  203. Frost, R. Fire and Ice. In The Poetry of Robert Frost 1975, p. 220, Lathem, E.C., Ed. New York: Holt, Rinehart and Winston.
  204. Barry, M.J., Fowler, F.J., Jr., O'Leary, M.P. et al. The American Urological Association symptom index for benign prostatic hyperplasia. The Measurement Committee of the American Urological Association. J. Urol. 1992; 148: 1549–57; discussion, 1564.
  205. Park, R., Martin, S., Goldberg, J.D. et al. Anastomotic strictures following radical prostatectomy: insights into incidence, effectiveness of intervention, effect on continence, and factors predisposing to occurrence. Urology 2001; 57: 742–6.
  206. Han, M., Piantadosi, S., Zahurak, M.L. et al. Serum acid phosphatase level and biochemical recurrence following radical prostatectomy for men with clinically localized prostate cancer. Urology 2001; 57: 707–11.
  207. Webber, M.M., Waghray, A., Bello, D. Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin. Cancer Res. 1995; 1: 1089–94.
  208. Kennedy-Smith, A.G., McKenzie, J.L., Owen, M.C. et al. Prostate specific antigen inhibits immune responses in vitro: a potential role in prostate cancer. J. Urol. 2002; 168: 741–7.
  209. Lee, C., Sintich, S.M., Mathews, E.P. et al. Transforming growth factor-beta in benign and malignant prostate. Prostate 1999; 39: 285–90.
  210. Webber, M.M., Waghray, A. Urokinase-mediated extracellular matrix degradation by human prostatic carcinoma cells and its inhibition by retinoic acid. Clin. Cancer Res. 1995; 1: 755–61.
  211. Shariat, S.F., Shalev, M., Menesses-Diaz, A. et al. Preoperative plasma levels of transforming growth factor beta(1) (TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy. J. Clin. Oncol. 2001; 19: 2856–64.
  212. Zelefsky, M.J., Lyass, O., Fuks, Z. et al. Predictors of improved outcome for patients with localized prostate cancer treated with neoadjuvant androgen ablation therapy and three-dimensional conformal radiotherapy. J. Clin. Oncol. 1998; 16: 3380–5.
  213. Strum, S.B., Scholz, M.C., McDermed, J.E. Intermittent androgen deprivation in prostate cancer patients: factors predictive of prolonged time off therapy. Oncologist 2000; 5: 45–52.
  214. Szostak, M.J., Kaur, P., Amin, P. et al. Apoptosis and bcl-2 expression in prostate cancer: significance in clinical outcome after brachytherapy. J. Urol. 2001; 165: 2126–30.
  215. Huang, A., Gandour-Edwards, R., Rosenthal, S.A. et al. p53 and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy. Urology 1998; 51: 346–51.
  216. Scherr, D.S., Vaughan, E.D., Jr., Wei, J. et al. BCL-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. J. Urol. 1999; 162: 12–6; discussion, 16–7.
  217. Rakozy, C., Grignon, D.J., Sarkar, F.H. et al. Expression of bcl-2, p53, and p21 in benign and malignant prostatic tissue before and after radiation therapy. Mod. Pathol. 1998; 11: 892–9.
  218. Häggström, S., Lissbrant, I.F., Bergh, A. et al. Testosterone induces vascular endothelial growth factor synthesis in the ventral prostate in castrated rats. J. Urol. 1999; 161: 1620–5.
  219. Cawley, H.M., Meltzer, S.J., De Benedetti, V.M. et al. Anti-p53 antibodies in patients with Barrett's esophagus or esophageal carcinoma can predate cancer diagnosis. Gastroenterology 1998; 115: 19–27.
  220. Smith, C.A., Pollice, A.A., Gu, L.P. et al. Correlations among p53, Her-2/neu, and ras overexpression and aneuploidy by multiparameter flow cytometry in human breast cancer: evidence for a common phenotypic evolutionary pattern in infiltrating ductal carcinomas. Clin. Cancer Res. 2000; 6: 112–26.
  221. Hughes-Fulford, M., Chen, Y., Tjandrawinata, R.R. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells. Carcinogenesis 2001; 22: 701–7.
  222. Rose, D.P. Dietary fatty acids and prevention of hormone-responsive cancer. Proc. Soc. Exp. Biol. Med. 1997; 216: 224–33.
  223. North, G.L. Celecoxib as adjunctive therapy for treatment of colorectal cancer. Ann. Pharmacother. 2001; 35: 1638–43.
  224. Zhao, J., Sharma, Y., Agarwal, R. Significant inhibition by the flavonoid antioxidant silymarin against 12-O-tetradecanoylphorbol 13-acetate-caused modulation of antioxidant and inflammatory enzymes, and cyclooxygenase 2 and interleukin-1alpha expression in SENCAR mouse epidermis: implications in the prevention of stage I tumor promotion. Mol. Carcinog. 1999; 26: 321–33.
  225. Kelavkar, U.P., Cohen, C., Kamitani, H. et al. Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis 2000; 21: 1777–87.
  226. Stojdl, D.F., Lichty, B., Knowles, S. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 2000; 6: 821–5.
  227. Balachandran, S., Barber, G.N. Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life 2000; 50: 135–8.
  228. Balachandran, S., Porosnicu, M., Barber, G.N. Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, ras, or myc function and involves the induction of apoptosis. J. Virol. 2001; 75: 3474–9.
  229. Rajan, P., Swaminathan, S., Zhu, J. et al. A novel translational regulation function for the simian virus 40 large-T antigen gene. J. Virol. 1995; 69: 785–95.
  230. Randazzo, B.P., Tal-Singer, R., Zabolotny, J.M. et al. Herpes simplex virus 1716, an ICP 34.5 null mutant, is unable to replicate in CV-1 cells due to a translational block that can be overcome by coinfection with SV40. J. Gen. Virol. 1997; 78: 3333–9.
  231. Reid, T.M., Loeb, L.A. Mutagenic specificity of oxygen radicals produced by human leukemia cells. Cancer Res. 1992; 52: 1082–6.
  232. Macmillan-Crow, L.A., Cruthirds, D.L. Invited review: manganese superoxide dismutase in disease. Free Radic. Res. 2001; 34: 325–36.
  233. Sigala, S., Tognazzi, N., Rizzetti, M.C. et al. Nerve growth factor induces the re-expression of functional androgen receptors and p75(NGFR) in the androgen-insensitive prostate cancer cell line DU145. Eur. J. Endocrinol. 2002; 147: 407–15.
  234. Wouters, B.G., Weppler, S.A., Koritzinsky, M. et al. Hypoxia as a target for combined modality treatments. Eur. J. Cancer 2002; 38: 240–57.
  235. Leith, J.T., Cook, S., Chougule, P. et al. Intrinsic and extrinsic characteristics of human tumors relevant to radiosurgery: comparative cellular radiosensitivity and hypoxic percentages. Acta Neurochir. Suppl. 1994; 62: 18–27.
  236. Dachs, G.U., Dougherty, G.J., Stratford, I.J. et al. Targeting gene therapy to cancer: a review. Oncol. Res. 1997; 9: 313–25.
  237. Fosslien, E. Review: molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis. Ann. Clin. Lab. Sci. 2001; 31: 325–48.
  238. Liu, X.H., Kirschenbaum, A., Yao, S. et al. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J. Urol. 2000; 164: 820–5.
  239. Stewart, R.J., Panigrahy, D., Flynn, E. et al. Vascular endothelial growth factor expression and tumor angiogenesis are regulated by androgens in hormone responsive human prostate carcinoma: evidence for androgen dependent destabilization of vascular endothelial growth factor transcripts. J. Urol. 2001; 165: 688–93.
  240. Levine, A.C., Liu, X.H., Greenberg, P.D. et al. Androgens induce the expression of vascular endothelial growth factor in human fetal prostatic fibroblasts. Endocrinology 1998; 139: 4672–8.
  241. 241. Keledjian, K., Borkowski, A., Kim, G. et al. Reduction of human prostate tumor vascularity by the alpha1-adrenoceptor antagonist terazosin. Prostate 2001; 48: 71–8.
  242. Joseph, I.B., Isaacs, J.T. Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J. Natl. Cancer Inst. 1998; 90: 1648–53.
  243. Joseph, I.B., Vukanovic, J., Isaacs, J.T. Antiangiogenic treatment with linomide as chemoprevention for prostate, seminal vesicle, and breast carcinogenesis in rodents. Cancer Res. 1996; 56: 3404–8.
  244. Khalil, A., Tullus, K., Bakhiet, M. et al. Angiotensin II type 1 receptor antagonist (losartan) down-regulates transforming growth factor-beta in experimental acute pyelonephritis. J. Urol. 2000; 164: 186–91.
  245. Selzer, M.G., Zhu, B., Block, N.L. et al. CMT-3, a chemically modified tetracycline, inhibits bony metastases and delays the development of paraplegia in a rat model of prostate cancer. Ann. N.Y. Acad. Sci. 1999; 878: 678–82.
  246. Lokeshwar, B.L., Selzer, M.G., Zhu, B.Q. et al. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int. J. Cancer 2002; 98: 297–309.
  247. Paget, S. Distribution of secondary growths in cancer of the breast. Lancet 1989; 1: 571–3.
  248. Smith, M.R., McGovern, F.J., Fallon, M.A. et al. Low bone mineral density in hormone-naive men with prostate carcinoma. Cancer 2001; 91: 2238–45.
  249. Strum, S.B., Scholz, M.C. Quantitative computerized tomography in prostate cancer. J. Urol. 2003 (submitted).
  250. Bolotin, H.H. Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness. Bone 2001; 28: 548–55.
  251. Frahm, C., Link, J., Hakelberg, K. et al. Densitometry in suspected preclinical osteoporosis: quantitative computerized tomography versus dual energy roentgen absorptiometry. Bildgebung 1994; 61: 256–62.
  252. von Stremple, A., Prokopp, M., Flindt, C. A comparison of two noninvasive measurement methods for determining central osteoporosis taking into consideration the ash content. Aktuelle Radiol. 1993; 3: 31–6.
  253. Meirelles, E.S., Borelli, A., Camargo, O.P. Influence of disease activity and chronicity on ankylosing spondylitis bone mass loss. Clin. Rheumatol. 1999; 18: 364–8.
  254. von der Recke, P., Hansen, M.A., Overgaard, K. et al. The impact of degenerative conditions in the spine on bone mineral density and fracture risk prediction. Osteoporos. Int. 1996; 6: 43–9.
  255. Tremollieres, F., Pouilles, J.M., Ribot, C. Screening techniques. Presse Med. 2002; 31: 694–8.
  256. Trivedi, D.P., Khaw, K.T. Bone mineral density at the hip predicts mortality in elderly men. Osteoporos. Int. 2001; 12: 259–65.
  257. Thorsen, K., Nordstrom, P., Lorentzon, R. et al. The relation between bone mineral density, insulin-like growth factor I, lipoprotein (a), body composition, and muscle strength in adolescent males. J. Clin. Endocrinol. Metab. 1999; 84: 3025–9.
  258. Prie, D., Huart, V., Bakouh, N. et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med. 2002; 347: 983–91.
  259. Pak, C.Y., Peterson, R.D., Poindexter, J. Prevention of spinal bone loss by potassium citrate in cases of calcium urolithiasis. J. Urol. 2002; 168: 31–4.
  260. Yasui, T., Fujita, K., Sasaki, S. et al. Alendronate inhibits osteopontin expression enhanced by parathyroid hormone-related peptide (PTHrP) in the rat kidney. Urol. Res. 1998; 26: 355–60.
  261. Cappuccio, F.P., Kalaitzidis, R., Duneclift, S. et al. Unraveling the links between calcium excretion, salt intake, hypertension, kidney stones and bone metabolism. J. Nephrol. 2000; 13: 169–77.
  262. Siegall, C.B., Schwab, G., Nordan, R.P. et al. Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Res. 1990; 50: 7786–8.
  263. Borsellino, N., Belldegrun, A., Bonavida, B. Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res. 1995; 55: 4633–9.
  264. Wise, G.J., Marella, V.K., Talluri, G. et al. Cytokine variations in patients with hormone treated prostate cancer. J. Urol. 2000; 164: 722–5.
  265. Garcia-Moreno, C., Mendez-Davila, C., de La Piedra, C. et al. Human prostatic carcinoma cells produce an increase in the synthesis of interleukin-6 by human osteoblasts. Prostate 2002; 50: 241–6.
  266. Liu, X.H., Kirschenbaum, A., Lu, M. et al. Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem. Biophys. Res. Commun. 2002; 290: 249–55.
  267. Spiotto, M.T., Chung, T.D. STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate 2000; 42: 186–95.
  268. Coukell, A.J., Markham, A. Pamidronate. A review of its use in the management of osteolytic bone metastases, tumour-induced hypercalcaemia and Paget's disease of bone. Drugs Aging 1998; 12: 149–68.
  269. Blumsohn, A., Herrington, K., Hannon, R.A. et al. The effect of calcium supplementation on the circadian rhythm of bone resorption. J. Clin. Endocrinol. Metab. 1994; 79: 730–5.
  270. Gross, C., Stamey, T., Hancock, S. et al. Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol). J. Urol. 1998; 159: 2035–9; discussion, 2039–40.
  271. Beer, T.M., Munar, M., Henner, W.D. A Phase I trial of pulse calcitriol in patients with refractory malignancies: pulse dosing permits substantial dose escalation. Cancer 2001; 91: 2431–9.
  272. Beer, T.M., Filers, K.M., Garzotto, M. et al. Androgen-independent prostate cancer (AIPC) treatment with weekly high-dose calcitriol and docetaxel. Proc. Am. Soc. Clin. Oncol. 2002; 21: 177a.
  273. Nijs, H.G., Essink-Bot, M.L., DeKoning, H.J. et al. Why do men refuse to attend population-based screening for prostate cancer? J. Public Health Med. 2000; 22: 312–6.
  274. Webb, J.A., Shanmuganathan, K., McLean, A. Complications of ultrasound-guided transperineal prostate biopsy. A prospective study. Br. J. Urol. 1993; 72: 775–7.
  275. Lujan Galan, M., Paez Borda, A., Fernandez Gonzalez, I. et al. Adverse effects of transrectal prostatic biopsy. Analysis of 303 procedures. Actas Urol. Esp. 2001; 25: 46–9.
  276. Kearney, M.C., Bingham, J.B., Bergland, R. et al. Clinical predictors in the use of finasteride for control of gross hematuria due to benign prostatic hyperplasia. J. Urol. 2002; 167: 2489–91.
  277. Sordello, S., Bertrand, N., Plouet, J. Vascular endothelial growth factor is up-regulated in vitro and in vivo by androgens. Biochem. Biophys. Res. Commun. 1998; 251: 287–90.
  278. Haggstrom, S., Torring, N., Moller, K. et al. Effects of finasteride on vascular endothelial growth factor. Scand. J. Urol. Nephrol. 2002; 36: 182–7.
  279. Costa, C., Soares, R., Reis-Filho, J.S. et al. Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J. Clin. Pathol. 2002; 55: 429–34.
  280. Kaji, Y., Kurhanewicz, J., Hricak, H. et al. Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging. Radiology 1998; 206: 785–90.
  281. Davis, M., Sofer, M., Kim, S.S. et al. The procedure of transrectal ultrasound guided biopsy of the prostate: a survey of patient preparation and biopsy technique. J. Urol. 2002; 167: 566–70.
  282. Shandera, K.C., Thibault, G.P., Deshon, G.E., Jr. Efficacy of one dose fluoroquinolone before prostate biopsy. Urology 1998; 52: 641–3.
  283. Aron, M., Rajeev, T.P., Gupta, N.P. Antibiotic prophylaxis for transrectal needle biopsy of the prostate: a randomized controlled study. BJU Int. 2000; 85: 682–5.
  284. Pareek, G., Armenakas, N.A., Fracchia, J.A. Periprostatic nerve blockade for transrectal ultrasound guided biopsy of the prostate: a randomized, double-blind, placebo controlled study. J. Urol. 2001; 166: 894–7.
  285. Nash, P.A., Bruce, J.E., Indudhara, R. et al. Transrectal ultrasound guided prostatic nerve blockade eases systematic needle biopsy of the prostate. J. Urol. 1996; 155: 607–9.
  286. Lynn, N.N., Collins, G.N., Brown, S.C. et al. Periprostatic nerve block gives better analgesia for prostatic biopsy. BJU Int. 2002; 90: 424–6.
  287. Soloway, M.S., Obek, C. Periprostatic local anesthesia before ultrasound guided prostate biopsy. J. Urol. 2000; 163: 172–3.
  288. Alavi, A.S., Soloway, M.S., Vaidya, A. et al. Local anesthesia for ultrasound guided prostate biopsy: a prospective randomized trial comparing 2 methods. J. Urol. 2001; 166: 1343–5.
  289. Saad, F., Sabbagh, R., McCormack, M. et al. A prospective randomized trial comparing lidocaine and lubrificating gel on pain level in patients undergoing transrectal ultrasound prostate biopsy. Can. J. Urol. 2002; 9: 1592–4.
  290. Issa, M.M., Bux, S., Chun, T. et al. A randomized prospective trial of intrarectal lidocaine for pain control during transrectal prostate biopsy: the Emory University experience. J. Urol. 2002; 164: 397–9.
  291. Masood, J., Shah, N., Lane, T. et al. Nitrous oxide (Entonox) inhalation and tolerance of transrectal ultrasound guided prostate biopsy: a double-blind randomized controlled study. J. Urol. 2002; 168: 116–20; discussion, 120.
  292. Irani, J., Fournier, F., Bon, D. et al. Patient tolerance of transrectal ultrasound-guided biopsy of the prostate. Br. J. Urol. 1997; 79: 608–10.
  293. Monti, S., Sciarra, F., Adamo, M.V. et al. Prevalent decrease of the EGF content in the periurethral zone of BPH tissue induced by treatment with finasteride or flutamide. J. Androl. 1997; 18: 488–94.
  294. Laroque, P.A., Prahalada, S., Molon-Noblot, S. et al. Quantitative evaluation of glandular and stromal compartments in hyperplastic dog prostates: effect of 5-alpha reductase inhibitors. Prostate 1995; 27: 121–8.
  295. Saez, C., Gonzalez-Baena, A.C., Japon, M.A. et al. Expression of basic fibroblast growth factor and its receptors FGFR1 and FGFR2 in human benign prostatic hyperplasia treated with finasteride. Prostate 1999; 40: 83–8.
  296. Wang, L.G., Liu, X.M., Kreis, W. et al. Down-regulation of prostate-specific antigen expression by finasteride through inhibition of complex formation between androgen receptor and steroid receptor-binding consensus in the promoter of the PSA gene in LNCaP cells. Cancer Res. 1997; 57: 714–9.
  297. Glassman, D.T., Chon, J.K., Borkowski, A. et al. Combined effect of terazosin and finasteride on apoptosis, cell proliferation, and transforming growth factor-beta expression in benign prostatic hyperplasia. Prostate 2001; 46: 45–51.
  298. Ng, Y.K., Bales, W., Box, E. et al. Cardura induced apoptosis in prostate cancer cells in vitro. Proc. Annu. Meet. Am. Assoc. Cancer Res. 1997; 38: A615.
  299. Chon, J.K., Borkowski, A., Partin, A.W. et al. Alpha 1-adrenoceptor antagonists terazosin and doxazosin induce prostate apoptosis without affecting cell proliferation in patients with benign prostatic hyperplasia. J. Urol. 1999; 161: 2002–8.
  300. Benning, C.M., Kyprianou, N. Quinazoline-derived alpha1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an alpha1-adrenoceptor-independent action. Cancer Res. 2002; 62: 597–602.
  301. Kyprianou, N., Benning, C.M. Suppression of human prostate cancer cell growth by alpha1-adrenoceptor antagonists doxazosin and terazosin via induction of apoptosis. Cancer Res. 2000; 60: 4550–5.
  302. Cuellar, D.C., Rhee, J., Kyprianou, N. Alpha1-adrenoceptor antagonists radiosensitize prostate cancer cells via apoptosis induction. Anticancer Res. 2002; 22: 1673–9.
  303. Huncharek, M., Muscat, J. Serum prostate-specific antigen as a predictor of staging abdominal/pelvic computed tomography in newly diagnosed prostate cancer. Abdom. Imaging 1996; 21: 364–7.
  304. Huncharek, M., Muscat, J. Serum prostate-specific antigen as a predictor of radiographic staging studies in newly diagnosed prostate cancer. Cancer Invest. 1995; 13: 31–5.
  305. Chybowski, F.M., Keller, J.J., Bergstralh, E.J. et al. Predicting radionuclide bone scan findings in patients with newly diagnosed, untreated prostate cancer: prostate specific antigen is superior to all other clinical parameters. J. Urol. 1991; 145: 313–8.
  306. Oesterling, J.E., Martin, S.K., Bergstralh, E.J. et al. The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA 1993; 269: 57–60.
  307. Sciarra, F., Sorcini, G., Di Silverio, F. et al. Plasma testosterone and androstenedione after orchiectomy in prostatic adenocarcinoma. Clin. Endocrinol. 1973; 2: 101–9.
  308. Gibson, C.H. A concept analysis of empowerment. J. Adv. Nurs. 1991; 16: 354–61.
  309. Davison, B.J., Degner, L.F. Empowerment of men newly diagnosed with prostate cancer. Cancer Nurs. 1997; 20: 187–96.
  310. Jones, P.S., Meleis, A.I. Health is empowerment. Adv Nurs. Sci. 1993; 15: 1–14.