Your Trusted Brand for Over 35 Years

Parkinson’s Disease References

Disease Prevention and Treatment, 5th edition

The references on this page correspond with the print version of Disease Prevention and Treatment, 5th edition. Since we continuously update the protocols online in response to new scientific developments, readers are encouraged to review the latest versions of the protocols.

  1. Parkinson's Disease Foundation. Statistics on Parkinson's. Accessed 8/1/2011.
  2. Heisters D. Parkinson's: symptoms, treatments and research. Br J Nurs. 2011 May 13-26;20(9):548-54.
  3. Parkinson J. An  Essay on the Shaking Palsy. 1817. J Neuropsychiatry Clin Neurosci. 2002 Spring;14(2):223-36;discussion 222.
  4. Martinez TN and Greenamyre JT. Toxin Models of Mitochondrial Dysfunction in Parkinson's Disease. Antioxid Redox Signal. 2011 Jul 12. [Epub ahead of print]
  5. Astiz M et al. Effect of pesticides on cell survival in liver and brain rat tissues. Ecotoxicol Environ Saf. 2009 Oct;72(7):2025-32. Epub 2009 Jun 2.
  6. Fleming L et al. Parkinson's disease and brain levels of organochlorine pesticides. Ann Neurol. 1994 Jul;36(1):100-3.
  7. Betarbet R et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000 Dec;3(12):1301-6.
  8. Brooks AI et al. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 1999 Mar 27;823(1-2):1-10.
  9. Kenborg L et al. Parkinson's disease among gardeners exposed to pesticides - a Danish cohort study. Scand J Work Environ Health. 2011 Jun 17. pii: 3176. doi: 10.5271/sjweh.3176. [Epub ahead of print]
  10. Wang A et al. Parkinson's disease risk from ambient exposure to pesticides. Eur J Epidemiol. 2011 Jul;26(7):547-55. Epub 2011 Apr 20.
  11. Flemming L et al. Parkinson's disease and brain levels of organochlorine pesticides. Ann Neurol. 1994 Jul;36(1):100-3.
  12. Priyadarshi A et al. A meta-analysis of Parkinson's disease and exposure to pesticides. Neurotoxicology. 2000 Aug;21(4):435-40.
  13. Moretto A and Colosio C. Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson's disease. Neurotoxicology. 2011 Aug;32(4):383-91. Epub 2011 Mar 23.
  14. Corrigan FM et al. Organochlorine insecticides in substantia nigra in Parkinson's disease. J Toxicol Environ Health A. 2000 Feb 25;59(4):229-34.
  15. Kanthasamy AG et al. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis. Neurotoxicology. 2005 Aug;26(4):701-19.
  16. Sun F et al. Dieldrin induces ubiquitin-proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death. J Pharmacol Exp Ther. 2005 Oct;315(1):69-79. Epub 2005 Jun 29.
  17. Steventon GB et al. A review of xenobiotic metabolism enzymes in Parkinson's disease and motor neuron disease. Drug Metabol Drug Interact. 2001;18(2):79-98.
  18. Williams A et al. Xenobiotic enzyme profiles and Parkinson's disease. Neurology. 1991 May;41(5 Suppl 2):29-32; discussion 32-3.
  19. Petrovitch H et al. Bowel movement frequency in late-life and substantia nigra neuron density at death. Mov Disord. 2009 Feb 15;24(3):371-6.
  20. Savica R et al. Medical records documentation of constipation preceding Parkinson disease: A case-control study. Neurology. 2009 Nov 24;73(21):1752-8.
  21. Ueki A et al. Life style risks of Parkinson's disease: association between decreased water intake and constipation. J Neurol. 2004 Oct;251 Suppl 7:vII18-23.
  22. Dickman MS. von Economo encephalitis. Arch Neurol. 2001 Oct;58(10):1696-8.
  23. Sardar AM et al. Dopamine deficits in the brain: the neurochemical basis of parkinsonian symptoms in AIDS. uroreport. 1996 Mar 22;7(4):910-2.
  24. PubMed Health. Parkinson's disease; Paralysis agitans; Shaking palsy. ( Accessed 8/17/2011.
  25. Mamo DC et al. Managing antipsychotic-induced parkinsonism. Drug Saf. 1999 Mar;20(3):269-75.
  26. Schouten HJ et al. Quality of Life of Elderly Patients With Antipsychotic-Induced Parkinsonism: A Cross-Sectional Study. J Am Med Dir Assoc. 2011 Feb 10.
  27. Bondon-Guitton E et al. Drug-induced parkinsonism: A review of 17 years' experience in a regional pharmacovigilance center in France. Mov Disord. 2011 Jun 14. doi: 10.1002/mds.23828. [Epub ahead of print]
  28. Francis PT. Biochemical and pathological correlates of cognitive and behavioural change in DLB/PDD. J Neurol. 2009 Aug;256 Suppl 3:280-5.
  29. Aarsland D and Kurz MW. The epidemiology of dementia associated with Parkinson disease. J Neurol Sci. 2010 Feb 15;289(1-2):18-22. Epub 2009 Sep 4.
  30. Francis PT et al. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999 Feb;66(2):137-47.
  31. McKeith I. Commentary: DLB and PDD: the same or different? Is there a debate? Int Psychogeriatr. 2009 Apr;21(2):220-4. Epub 2009 Jan 28.
  32. Samii A et al. Parkinson's disease. Lancet. 2004 May 29;363(9423):1783-93.
  33. Lesage S and Brice A. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009 Apr 15;18(R1):R48-59.
  34. Mata IF et al. SNCA variant associated with Parkinson disease and plasma alpha-synuclein level. Arch Neurol. 2010 Nov;67(11):1350-6.
  35. Pihlstrom L et al. Genetic variability in SNCA and Parkinson's disease. Neurogenetics. 2011 Jul 29. [Epub ahead of print]
  36. Lewis KA et al. Abnormal neurites containing C-terminally truncated alpha-synuclein are present in Alzheimer's disease without conventional Lewy body pathology. Am J Pathol. 2010 Dec;177(6):3037-50. Epub 2010 Nov 5.
  37. Singleton AB et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science. 2003 Oct 31;302(5646):841.
  38. Papapetropoulos S et al. Clinical heterogeneity of the LRRK2 G2019S mutation. Arch Neurol. 2006 Sep;63(9):1242-6.
  39. Poorkaj P et al. parkin mutation analysis in clinic patients with early-onset Parkinson [corrected] disease. Am J Med Genet A. 2004 Aug 15;129A(1):44-50.
  40. Yu W et al. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet. 2011 Aug 15;20(16):3227-40. Epub 2011 May 25.
  41. Whitworth AJ and Pallanck LJ. The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr. 2009 Dec;41(6):499-503.
  42. Khan NL et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann Neurol. 2002 Dec;52(6):849-53.
  43. Zhang X et al. Mutation analysis of PINK1 gene in patients with early-onset Parkinsonism. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011 Jun;36(6):490-7.
  44. Xu X et al. The familial Parkinson's disease gene DJ-1 (PARK7) is expressed in red cells and plays a role in protection against oxidative damage. Blood Cells Mol Dis. 2010 Oct;45(3):227-32.
  45. van Duijn CM et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet. 2001 Sep;69(3):629-34. Epub 2001 Jul 2.
  46. Bonifati V et al. mal recessive early onset parkinsonism is linked to three loci: PARK2, PARK6, and PARK7. Neurol Sci. 2002 Sep;23 Suppl 2:S59-60.
  47. Hering R et al. Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7). Hum Mutat. 2004 Oct;24(4):321-9.
  48. Inden M, Taira T, Kitamura Y, et al. PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson’s disease rat model. Neurobiol Dis. 2006 Oct;24(1):144-58.
  49. Hampshire DJ et al. Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet. 2001 Oct;38(10):680-2.
  50. Ugolino J et al. Mutant Atp13a2 proteins involved in parkinsonism are degraded by ER-associated degradation and sensitize cells to ER-stress induced cell death. Hum Mol Genet. 2011 Jun 23. [Epub ahead of print].
  51. Park JS et al. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat. 2011 Aug;32(8):956-64. doi: 10.1002/humu.21527. Epub 2011 Jul 12.
  52. Fong CY et al. Juvenile parkinsonism associated with heterozygous frameshift ATP13A2 gene mutation. Eur J Paediatr Neurol. 2011 May;15(3):271-5. Epub 2011 Feb 12.
  53. Kempster PA et al. Relationships between age and late progression of Parkinson's disease: a clinico-pathological study. Brain. 2010 Jun;133(Pt 6):1755-62. Epub 2010 Apr 5.
  54. Lee MS et al. The effect of age on motor deficits and cerebral glucose metabolism of Parkinson's disease. Acta Neurol Scand. 2011 Sep;124(3):196-201. doi: 10.1111/j.1600-0404.2010.01446.x. Epub 2010 Sep 29.
  55. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 2008 Jan;7(1):97-109.
  56. Zhu J et al. Mitochondrial dysfunction in Parkinson's disease. J Alzheimers Dis. 2010;20 Suppl 2:S325-34.
  57. Lin TK et al. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease. Chang Gung Med J. 2009 Nov-Dec;32(6):589-99.
  58. Van Humbeeck et al. Parkin interacts with ambra1 to induce mitophagy. J Neurosci. 2011 Jul 13;31(28):10249-61.
  59. Geisler S et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010 Feb;12(2):119-31. Epub 2010 Jan 24.
  60. Song DD et al. Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol. 2004 Apr;186(2):158-72.
  61. Kraytsberg Y et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006 May;38(5):518-20. Epub 2006 Apr 9.
  62. de Castro IP et al. Mitochondrial quality control and Parkinson's disease: a pathway unfolds. Mol Neurobiol. 2011 Apr;43(2):80-6. Epub 2010 Dec 1.
  63. Gautam AH and Zeevalk GD. Characterization of reduced and oxidized dopamine and 3,4-dihydrophenylacetic acid, on brain mitochondrial electron transport chain activities. Biochim Biophys Acta. 2011 Jul;1807(7):819-28. Epub 2011 Apr 2.
  64. Khan FH et al. Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson's disease. Biochim Biophys Acta. 2005 Jun 30;1741(1-2):65-74. Epub 2005 Apr 14.
  65. Mosharov EV. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009 Apr 30;62(2):218-29.
  66. Chu CT. Diversity in the regulation of autophagy and mitophagy: lessons from Parkinson's disease. Parkinsons Dis. 2011;2011:789431. Epub 2011 Mar 17.
  67. Li WW et al. Localization of alpha-synuclein to mitochondria within midbrain of mice. Neuroreport. 2007 Oct 8;18(15):1543-6.
  68. Liu G et al. alpha-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett. 2009 May 1;454(3):187-92. Epub 2009 Feb 28.
  69. Devi L et al. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008 Apr 4;283(14):9089-100. Epub 2008 Feb 1.
  70. Iseki E et al. Degeneration process of Lewy bodies in the brains of patients with dementia with Lewy bodies using alpha-synuclein-immunohistochemistry. Neurosci Lett. 2000 May 26;286(1):69-73.
  71. McGeer PL et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988 Aug;38(8):1285-91.
  72. McGeer PL et al. Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat Disord. 2004 May;10 Suppl 1:S3-7.
  73. Barcia C et al. Inflammatory response in Parkinsonism. J Neural Transm Suppl. 2009;(73):245-52.
  74. Glass CK et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010 Mar 19;140(6):918-34.
  75. Chen H et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease. Ann Neurol. 2005 Dec;58(6):963-7.
  76. Driver JA et al. Use of non-steroidal anti-inflammatory drugs and risk of Parkinson's disease: nested case-control study. BMJ. 2011 Jan 20;342:d198. doi: 10.1136/bmj.d198.
  77. Quist-Paulsen P. Statins and inflammation: an update. Curr Opin Cardiol. 2010 Jul;25(4):399-405.
  78. Roy A et al. Prospects of statins in Parkinson disease. Neuroscientist. 2011 Jun;17(3):244-55. Epub 2011 Jan 20.
  79. Yan J et al. Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses. PLoS One. 2011;6(6):e20945. Epub 2011 Jun 22.
  80. Ghosh A et al. Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease. J Neurosci. 2009 Oct 28;29(43):13543-56.
  81. Wang Q et al. Simvastatin reverses the downregulation of dopamine D1 and D2 receptor expression in the prefrontal cortex of 6-hydroxydopamine-induced Parkinsonian rats. Brain Res. 2005 May 31;1045(1-2):229-33. Epub 2005 Apr 22.
  82. Wolozin B et al. Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease. BMC Med. 2007 Jul 19;5:20.
  83. Rice JE et al. Disordered respiration as a levodopa-induced dyskinesia in Parkinson's disease. Mov Disord. 2002 May;17(3):524-7.
  84. Jenner P et al. Molecular mechanisms of L-DOPA-induced dyskinesia. ture Reviews Neuroscience9, 665-677 (September 2008).
  85. Rajagopalan P et al. Homocysteine effects on brain volumes mapped in 732 elderly individuals. Neuroreport. 2011 Jun 11;22(8):391-5.
  86. Kloppenborg RP et al. Homocysteine and cerebral small vessel disease in patients with symptomatic atherosclerotic disease. The SMART-MR study. Atherosclerosis. 2011 Jun;216(2):461-6. Epub 2011 Feb 24.
  87. Zoccolella S et al. Hyperhomocysteinemia in L-dopa treated patients with Parkinson's disease: potential implications in cognitive dysfunction and dementia? Curr Med Chem. 2010;17(28):3253-61.
  88. Corona T et al. A longitudinal study of the effects of an L-dopa drug holiday on the course of Parkinson's disease. Clin Neuropharmacol. 1995 Aug;18(4):325-32.
  89. Koziorowski D and Friedman A et al. Levodopa "drug holiday" with amantadine infusions as a treatment of complications in Parkinson's disease. Mov Disord. 2007 May 15;22(7):1033-6.
  90. Antonini A et al. A reassessment of risks and benefits of dopamine agonists in Parkinson's disease. Lancet Neurol. 2009 Oct;8(10):929-37. Epub 2009 Aug 24.
  91. Katzenschlager R et al. Mucuna pruriens in Parkinson's disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry. 2004 Dec;75(12):1672-7.
  92. Mizuno Y et al. Early addition of selegiline to L-Dopa treatment is beneficial for patients with Parkinson disease. Clin Neuropharmacol. 2010 Jan-Feb;33(1):1-4.
  93. Zhao YJ et al. Selegiline use is associated with a slower progression in early Parkinson's disease as evaluated by Hoehn and Yahr Stage transition times. Parkinsonism Relat Disord. 2011 Mar;17(3):194-7. Epub 2010 Dec 14.
  94. Palhagen S et al. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology. 2006 Apr 25;66(8):1200-6. Epub 2006 Mar 15.
  95. Imamura K et al. The relationship between depression and regional cerebral blood flow in Parkinson's disease and the effect of selegiline treatment. Acta Neurol Scand. 2011 Jul;124(1):28-39. Epub 2010 Sep 29.
  96. Braga CA et al. The anti-Parkinsonian drug selegiline delays the nucleation phase of α-synuclein aggregation leading to the formation of nontoxic species. J Mol Biol. 2011 Jan 7;405(1):254-73. Epub 2010 Nov 2.
  97. Dimpfel W et al. Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro. BMC Pharmacol. 2011 Feb 21;11:2.
  98. Rascol O et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease (the ADAGIO study): prespecified and post-hoc analyses of the need for additional therapies, changes in UPDRS scores, and non-motor outcomes. Lancet Neurol. 2011 May;10(5):415-23. Epub 2011 Apr 7.
  99. Sawada H et al. Amantadine for dyskinesias in Parkinson's disease: a randomized controlled trial. PLoS One. 2010 Dec 31;5(12):e15298.
  100. Thomas A et al. Duration of amantadine benefit on dyskinesia of severe Parkinson's disease. J Neurol Neurosurg Psychiatry. 2004 Jan;75(1):141-3.
  101. Exley R and Cragg SJ. Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol. 2008 Mar;153 Suppl 1:S283-97. Epub 2007 Nov 26.
  102. Pimlott SL et al. Nicotinic acetylcholine receptor distribution in Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology. 2004 Jan;29(1):108-16.
  103. Shimohama S. Nicotinic receptor-mediated neuroprotection in neurodegenerative disease models. Biol Pharm Bull. 2009 Mar;32(3):332-6.
  104. Hong DP et al. Smoking and Parkinson's disease: does nicotine affect alpha-synuclein fibrillation? Biochim Biophys Acta. 2009 Feb;1794(2):282-90. Epub 2008 Oct 25.
  105. Tanaka K et al. Active and passive smoking and risk of Parkinson's disease. Acta Neurol Scand. 2010 Dec;122(6):377-82.
  106. Tan EK et al. Dose-dependent protective effect of coffee, tea, and smoking in Parkinson's disease: a study in ethnic Chinese. J Neurol Sci. 2003 Dec 15;216(1):163-7.
  107. Holms AD et al. Acute nicotine enhances strategy-based semantic processing in Parkinson's disease. Int J Neuropsychopharmacol. 2011 Aug;14(7):877-85. Epub 2011 Feb 1.
  108. Quik M et al. Nicotine and Parkinson's disease: implications for therapy. Mov Disord. 2008 Sep 15;23(12):1641-52.
  109. Efficacy of Transdermal Nicotine, on Motor Symptoms in Advanced Parkinson's Disease (NICOPARK2). { }. Accessed 8/25/2011.
  110. Xiao BG et al. Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection. J Cell Mol Med. 2007 Nov-Dec;11(6):1272-90.
  111. Khatibi NH et al. Granulocyte colony-stimulating factor treatment provides neuroprotection in surgically induced brain injured mice. Acta Neurochir Suppl. 2011;111:265-9.
  112. Song S et al. Granulocyte-colony stimulating factor (G-CSF) enhances recovery in mouse model of Parkinson's disease. Neurosci Lett. 2011 Jan 7;487(2):153-7. Epub 2010 Oct 14.
  113. McCollum M et al. Post-MPTP treatment with granulocyte colony-stimulating factor improves nigrostriatal function in the mouse model of Parkinson's disease. Mol Neurobiol. 2010 Jun;41(2-3):410-9. Epub 2010 Apr 21.
  114. Sanchez-Ramos J et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice. Neuroscience. 2009 Sep 29;163(1):55-72. Epub 2009 Jun 14.
  115. Study of the Neuro-protective Effect of Granulocyte-colony Stimulating Factor on Early Stage Parkinson's Disease. Available at Accessed 9/9/2011.
  116. Freed CR et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001 Mar 8;344(10):710-9.
  117. Kim HJ. Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta. 2011 Jan;1812(1):1-11. Epub 2010 Aug 14.
  118. ScienceDaily. "Exact Brain Electrode Placement for Parkinson's Patients Now Possible; Research Opens the Way to More Precise Deep Brain Stimulation". Available at Accessed 9/8/2011.
  119. Dobkin RD et al. Cognitive-Behavioral Therapy for Depression in Parkinson's Disease: A Randomized, Controlled Trial. Am J Psychiatry. 2011 Jun 15. [Epub ahead of print]
  120. Vaughan CP et al. Behavioral therapy to treat urinary incontinence in Parkinson disease. Neurology. 2011 May 10;76(19):1631-4.
  121. Allen NE et al. Balance and falls in Parkinson's disease: A meta-analysis of the effect of exercise and motor training. Mov Disord. 2011 Aug 1;26(9):1605-15. doi: 10.1002/mds.23790. Epub 2011 Jun 14.
  122. Jak AJ. The Impact of Physical and Mental Activity on Cognitive Aging. Curr Top Behav Neurosci. 2011 Aug 5. [Epub ahead of print]
  123. Lau YS et al. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson's disease with moderate neurodegeneration. Eur J Neurosci. 2011 Apr;33(7):1264-74. doi: 10.1111/j.1460-9568.2011.07626.x. Epub 2011 Mar 7.
  124. Cereda E et al. Low-protein and protein-redistribution diets for Parkinson's disease patients with motor fluctuations: a systematic review. Mov Disord. 2010 Oct 15;25(13):2021-34.
  125. Butt MS and Sultan MT. Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr. 2011 Apr;51(4):363-73.
  126. Hu G et al. Coffee and tea consumption and the risk of Parkinson's disease. Mov Disord. 2007 Nov 15;22(15):2242-8.
  127. Saaksjarvi K et al. Prospective study of coffee consumption and risk of Parkinson's disease. Eur J Clin Nutr. 2008 Jul;62(7):908-15. Epub 2007 May 16.
  128. Herraiz T and Chaparro C. Human monoamine oxidase enzyme inhibition by coffee and beta-carbolines norharman and harman isolated from coffee. Life Sci. 2006 Jan 18;78(8):795-802. Epub 2005 Aug 31.
  129. Abreu RV et al. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav. 2011 Oct;99(4):659-64. Epub 2011 Jun 15.
  130. Tohda C et al. Trigonelline-induced neurite outgrowth in human neuroblastoma SK-N-SH cells. Biol Pharm Bull. 1999 Jul;22(7):679-82.
  131. Farah A et al. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr. 2008 Dec;138(12):2309-15.
  132. Xie X et al. Adenosine and dopamine receptor interactions in striatum and caffeine-induced behavioral activation. Comp Med. 2007 Dec;57(6):538-45.
  133. Hauser RA et al. Adenosine A2A receptor antagonists for Parkinson's disease: rationale, therapeutic potential and clinical experience. Drugs Aging. 2005;22(6):471-82.
  134. Kanda T et al. Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol. 2000 Apr;162(2):321-7.
  135. Matsuya T et al. Synergistic effects of adenosine A2A antagonist and L-DOPA on rotational behaviors in 6-hydroxydopamine-induced hemi-Parkinsonian mouse model. J Pharmacol Sci. 2007 Mar;103(3):329-32. Epub 2007 Mar 7.
  136. Kitagawa M et al. ffects of caffeine on the freezing of gait in Parkinson's disease. Mov Disord. 2007 Apr 15;22(5):710-2.
  137. Dhanasekaran M, Karuppagounder SS, Uthayathas S, et al. Effect of dopaminergic neurotoxin MPTP/MPP+ on coenzyme Q content. Life Sci. Jul 18 2008;83(3-4):92-95.
  138. Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. Nov 2008;4(11):600-609.
  139. Hargreaves IP, Lane A, Sleiman PM. The coenzyme Q10 status of the brain regions of Parkinson's disease patients. Neurosci Lett. Dec 5 2008;447(1):17-19.
  140. Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. Oct 2002;59(10):1541-1550.
  141. Shults CW, Flint Beal M, Song D, Fontaine D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson's disease. Exp Neurol. Aug 2004;188(2):491-494.
  142. Storch A et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol. 2007 Jul;64(7):938-44. Epub 2007 May 14.
  143. Abdin AA, Hamouda HE. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology. Dec 2008;55(8):1340-1346.
  144. Cleren C, Yang L, Lorenzo B, et al. Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem. Mar 2008;104(6):1613-1621.
  145. Wyss M, Schulze A. Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience. 2002;112(2):243-260.
  146. Beal MF. Bioenergetic approaches for neuroprotection in Parkinson's disease. Ann Neurol. 2003;53 Suppl 3:S39-47; discussion S47-38.
  147. Fernandez-Espejo E. Pathogenesis of Parkinson's disease: prospects of neuroprotective and restorative therapies. Mol Neurobiol. Feb 2004;29(1):15-30.
  148. Schapira AH. Progress in neuroprotection in Parkinson's disease. Eur J Neurol. Apr 2008;15 Suppl 1:5-13.
  149. Klein AM, Ferrante RJ. The neuroprotective role of creatine. Subcell Biochem. 2007;46:205-243.
  150. NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. Mar 14 2006;66(5):664-671.
  151. NINDS NET-PD Investigators. A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol. May-Jun 2008;31(3):141-150.
  152. Yang L et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases. J Neurochem. 2009 Jun;109(5):1427-39. Epub 2009 Mar 28.
  153. Bender A et al. Long-term creatine supplementation is safe in aged patients with Parkinson disease. Nutr Res. 2008 Mar;28(3):172-8.
  154. Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health implications. Int J Dev Neurosci. Jul-Aug 2000;18(4-5):383-399.
  155. Montine KS, Quinn JF, Zhang J, et al. Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids. Mar 2004;128(1-2):117-124.
  156. Saugstad LF. Infantile autism: a chronic psychosis since infancy due to synaptic pruning of the supplementary motor area. Nutr Health. 2008;19(4):307-317.
  157. Saugstad LF. Are neurodegenerative disorder and psychotic manifestations avoidable brain dysfunctions with adequate dietary omega-3? Nutr Health. 2006;18(2):89-101.
  158. Calon F, Cole G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids. Nov-Dec 2007;77(5-6):287-293.
  159. Wu Y, Tada M, Takahata K, Tomizawa K, Matsui H. Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by etoposide, okadaic acid and AraC in Neuro2a cells. Acta Med Okayama. Jun 2007;61(3):147-152.
  160. Bousquet M, Saint-Pierre M, Julien C, Salem N, Jr., Cicchetti F, Calon F. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease. FASEB J. Apr 2008;22(4):1213-1225.
  161. Samadi P, Gregoire L, Rouillard C, Bedard PJ, Di Paolo T, Levesque D. Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol. Feb 2006;59(2):282-288.
  162. Yahr MD, Duvoisin RC, Cote L, Cohen G. Pyridoxine, DOPA, and Parkinsonism. Adv Biochem Psychopharmacol. 1972;4:185-194.
  163. McGeer PL, Zeldowicz L, McGeer EG. A clinical trial of folic acid in Parkinson's disease. Can Med Assoc J. Jan 22 1972;106(2):145-146 passim.
  164. Schwarz J, Trenkwalder C, Gasser T, Arnold G, Oertel WH. Folinic acid therapy fails to improve early Parkinson's disease: a two week placebo controlled clinical trial. J Neural Transm Park Dis Dement Sect. 1992;4(1):35-41.
  165. Bottiglieri T, Hyland K, Reynolds EH. The clinical potential of ademetionine (S-adenosylmethionine) in neurological disorders. Drugs. Aug 1994;48(2):137-152.
  166. Martignoni E, Tassorelli C, Nappi G, Zangaglia R, Pacchetti C, Blandini F. Homocysteine and Parkinson's disease: a dangerous liaison? J Neurol Sci. Jun 15 2007;257(1-2):31-37.
  167. Obeid R, McCaddon A, Herrmann W. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin Chem Lab Med. 2007;45(12):1590-1606.
  168. Siniscalchi A, Mancuso F, Gallelli L, Ferreri Ibbadu G, Biagio Mercuri N, De Sarro G. Increase in plasma homocysteine levels induced by drug treatments in neurologic patients. Pharmacol Res. Nov 2005;52(5):367-375.
  169. Tan EK, Cheah SY, Fook-Chong S, et al. Functional COMT variant predicts response to high dose pyridoxine in Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet. Aug 5 2005;137B(1):1-4.
  170. Postuma RB, Espay AJ, Zadikoff C, et al. Vitamins and entacapone in levodopa-induced hyperhomocysteinemia: a randomized controlled study. Neurology. Jun 27 2006;66(12):1941-1943.
  171. Balk E, Chung M, Raman G, et al. B vitamins and berries and age-related neurodegenerative disorders. Evid Rep Technol Assess (Full Rep). Apr 2006(134):1-161.
  172. Amadasi A, Bertoldi M, Contestabile R, et al. Pyridoxal 5'-phosphate enzymes as targets for therapeutic agents. Curr Med Chem. 2007;14(12):1291-1324.
  173. Zoccolella S, Iliceto G, deMari M, Livrea P, Lamberti P. Management of L-Dopa related hyperhomocysteinemia: catechol-O-methyltransferase (COMT) inhibitors or B vitamins? Results from a review. Clin Chem Lab Med. 2007;45(12):1607-1613.
  174. Qureshi GA, Qureshi AA, Devrajani BR, Chippa MA, Syed SA. Is the deficiency of vitamin B12 related to oxidative stress and neurotoxicity in Parkinson's patients? CNS Neurol Disord Drug Targets. Feb 2008;7(1):20-27.
  175. Muller T. Role of homocysteine in the treatment of Parkinson's disease. Expert Rev Neurother. Jun 2008;8(6):957-967.
  176. Dos Santos EF, Busanello EN, Miglioranza A, et al. Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson s disease. Metab Brain Dis. Mar 18 2009.
  177. Walker DG et al. Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol. 2006 Mar;79(3):596-610. Epub 2005 Dec 19.
  178. Guillot X et al. Vitamin D and inflammation. Joint Bone Spine. 2010 Dec;77(6):552-7. Epub 2010 Nov 9.
  179. Knekt P et al. Serum vitamin D and the risk of Parkinson disease. Arch Neurol. 2010 Jul;67(7):808-11.
  180. Evatt ML et al. Prevalence of vitamin d insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol. 2008 Oct;65(10):1348-52.
  181. Virmani A, Gaetani F, Imam S, Binienda Z, Ali S. The protective role of L-carnitine against neurotoxicity evoked by drug of abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann N Y Acad Sci. Jun 2002;965:225-232.
  182. Bodis-Wollner I, Chung E, Ghilardi MF, et al. Acetyl-levo-carnitine protects against MPTP-induced parkinsonism in primates. J Neural Transm Park Dis Dement Sect. 1991;3(1):63-72.
  183. Virmani A, Gaetani F, Imam S, Binienda Z, Ali S. The protective role of L-carnitine against neurotoxicity evoked by drug of abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann N Y Acad Sci. Jun 2002;965:225-232.
  184. Virmani A, Gaetani F, Binienda Z. Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine. Ann N Y Acad Sci. Aug 2005;1053:183-191.
  185. Wang C, Sadovova N, Ali HK, et al. L-carnitine protects neurons from 1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture. Neuroscience. Jan 5 2007;144(1):46-55.
  186. Zhang H, Jia H, Liu J, et al. Combined R-alpha-lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson's disease. J Cell Mol Med. 2010 Jan;14(1-2):215-25.
  187. Mandel SA, Amit T, Weinreb O, Reznichenko L, Youdim MB. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther. Winter 2008;14(4):352-365.
  188. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. Sep 2001;78(5):1073-1082.
  189. Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson's disease. Drugs Aging. 2003;20(10):711-721.
  190. Levites Y, Amit T, Youdim MB, Mandel S. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem. Aug 23 2002;277(34):30574-30580.
  191. Choi JY, Park CS, Kim DJ, et al. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology. Sep 2002;23(3):367-374.
  192. Nie G, Cao Y, Zhao B. Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep. 2002;7(3):171-177.
  193. Mandel S, Maor G, Youdim MB. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci. 2004;24(3):401-416.
  194. Guo S, Bezard E, Zhao B. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med. Sep 1 2005;39(5):682-695.
  195. Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol Psychiatry. Dec 15 2007;62(12):1353-1362.
  196. Levites Y, Youdim MB, Maor G, Mandel S. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol. Jan 1 2002;63(1):21-29.
  197. Li R et al. (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res. 2004 Dec 1;78(5):723-31.
  198. Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS. Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology. Jul 2008;29(4):656-662.
  199. Chen D, Wang CY, Lambert JD, Ai N, Welsh WJ, Yang CS. Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure-activity relationship and molecular-modeling studies. Biochem Pharmacol. May 15 2005;69(10):1523-1531.
  200. Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim MB. Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr. Aug 2008;138(8):1578S-1583S.
  201. Li R, Peng N, Du F, Li XP, Le WD. Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation. Nan Fang Yi Ke Da Xue Xue Bao. Apr 2006;26(4):376-380.
  202. Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol. Sep 1 2006;545(1):51-64.
  203. Avramovich-Tirosh Y, Reznichenko L, Mit T, et al. Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res. Sep 2007;4(4):403-411.
  204. Zhao B. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochem Res. Apr 2009;34(4):630-638.
  205. Penumathsa SV, Maulik N. Resveratrol: a promising agent in promoting cardioprotection against coronary heart disease. Can J Physiol Pharmacol. Apr 2009;87(4):275-286.
  206. Pallas M, Casadesus G, Smith MA, et al. Resveratrol and neurodegenerative diseases: activation of SIRT1 as the potential pathway towards neuroprotection. Curr Neurovasc Res. Feb 2009;6(1):70-81.
  207. Pallas M, Verdaguer E, Tajes M, Gutierrez-Cuesta J, Camins A. Modulation of sirtuins: new targets for antiageing. Recent Pat CNS Drug Discov. Jan 2008;3(1):61-69.
  208. Lee MK, Kang SJ, Poncz M, Song KJ, Park KS. Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med. Jun 30 2007;39(3):376-384.
  209. Bureau G, Longpre F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res. Feb 1 2008;86(2):403-410.
  210. Jin F, Wu Q, Lu YF, Gong QH, Shi JS. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. Eur J Pharmacol. Dec 14 2008;600(1-3):78-82.
  211. Lieu CA et al. A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord. 2010 Aug;16(7):458-65. Epub 2010 May 31.
  212. Kasture S et al. Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson's disease. Neurotox Res. 2009 Feb;15(2):111-22. Epub 2009 Feb 20.
  213. KAtzenschlager R et al. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008 Aug 12;71(7):474-80. Epub 2008 Jun 25.
  214. Chen J, Tang XQ, Zhi JL, et al. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis. Jun 2006;11(6):943-953.
  215. Jagatha B, Mythri RB, Vali S, Bharath MM. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson's disease explained via in silico studies. Free Radic Biol Med. Mar 1 2008;44(5):907-917.
  216. Mythri RB, Jagatha B, Pradhan N, Andersen J, Bharath MM. Mitochondrial complex I inhibition in Parkinson's disease: how can curcumin protect mitochondria? Antioxid Redox Signal. Mar 2007;9(3):399-408.
  217. Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE. Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol. Apr 2008;115(4):479-489.
  218. Rajeswari A, Sabesan M. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson's disease induced by MPTP neurodegeneration in mice. Inflammopharmacology. Apr 2008;16(2):96-99.
  219. Sethi P, Jyoti A, Hussain E, Sharma D. Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav. Apr 16 2009.
  220. Yang S, Zhang D, Yang Z, et al. Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem Res. Oct 2008;33(10):2044-2053.
  221. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic Res. Oct 2005;39(10):1119-1125.
  222. Capitelli C, Sereniki A, Lima MM, Reksidler AB, Tufik S, Vital MA. Melatonin attenuates tyrosine hydroxylase loss and hypolocomotion in MPTP-lesioned rats. Eur J Pharmacol. Oct 10 2008;594(1-3):101-108.
  223. Dowling GA, Mastick J, Colling E, Carter JH, Singer CM, Aminoff MJ. Melatonin for sleep disturbances in Parkinson's disease. Sleep Med. Sep 2005;6(5):459-466.
  224. Klongpanichapak S, Phansuwan-Pujito P, Ebadi M, Govitrapong P. Melatonin inhibits amphetamine-induced increase in alpha-synuclein and decrease in phosphorylated tyrosine hydroxylase in SK-N-SH cells. Neurosci Lett. May 16 2008;436(3):309-313.
  225. Lin CH, Huang JY, Ching CH, Chuang JI. Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. J Pineal Res. Mar 2008;44(2):205-213.
  226. Ma J, Shaw VE, Mitrofanis J. Does melatonin help save dopaminergic cells in MPTP-treated mice? Parkinsonism Relat Disord. May 2009;15(4):307-314.
  227. Medeiros CA, Carvalhedo de Bruin PF, Lopes LA, Magalhaes MC, de Lourdes Seabra M, de Bruin VM. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson's disease. A randomized, double blind, placebo-controlled study. J Neurol. Apr 2007;254(4):459-464.
  228. Paus S, Schmitz-Hubsch T, Wullner U, Vogel A, Klockgether T, Abele M. Bright light therapy in Parkinson's disease: a pilot study. Mov Disord. Jul 30 2007;22(10):1495-1498.
  229. Saravanan KS, Sindhu KM, Mohanakumar KP. Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res. Apr 2007;42(3):247-253.
  230. Willis GL. Parkinson's disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci. 2008;19(4-5):245-316.
  231. Willis GL, Turner EJ. Primary and secondary features of Parkinson's disease improve with strategic exposure to bright light: a case series study. Chronobiol Int. 2007;24(3):521-537.
  232. Clark J et al. Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One. 2010 Aug 23;5(8):e12333.
  233. Jana S et al. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease. Biochim Biophys Acta. 2011 Jun;1812(6):663-73. Epub 2011 Mar 4.
  234. Ghibu E et al. Antioxidant properties of an endogenous thiol: Alpha-lipoic acid, useful in the prevention of cardiovascular diseases. J Cardiovasc Pharmacol. 2009 Nov;54(5):391-8.
  235. De Araujo DP et al. The contributions of antioxidant activity of lipoic acid in reducing neurogenerative progression of Parkinson's disease: a review. Int J Neurosci. 2011 Feb;121(2):51-7. Epub 2010 Dec 2.
  236. Cassani E et al. Use of probiotics for the treatment of constipation in Parkinson's disease patients. Minerva Gastroenterol Dietol. 2011 Jun;57(2):117-21.