Your Trusted Brand for Over 35 Years

Diabetes References

Disease Prevention and Treatment, 5th edition

The references on this page correspond with the print version of Disease Prevention and Treatment, 5th edition. Since we continuously update the protocols online in response to new scientific developments, readers are encouraged to review the latest versions of the protocols.

  1. Kumar V, Abbas AK, et al, eds. Robbins and Cotran Pathologic Basis of Disease. 7th ed. Philadelphia, Pa: Elsevier; 2005.
  2. Kohn RR, Cerami A, et al. Collagen aging in vitro by nonenzymatic glycosylation and browning. Diabetes. 1984 Jan;33(1):57–9.
  3. Monnier VM, Kohn RR, et al. Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci U S A. 1984 Jan;81(2):583–7.
  4. Wright E Jr., Scism-Bacon JL, et al. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006 Mar;60(3):308-14.
  5. Forbes JM, Cooper ME, et al. Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol. 2003 Aug;14(8 Suppl 3):S254–S258.
  6. Schmidt AM, Stern DM. RAGE: A new target for the prevention and treatment of the vascular and inflammatory complications of diabetes. Trends Endocrinol Metab. 2000 Nov 1;11(9):368–75.
  7. Sakurai S, Yonekura H, et al. The AGE-RAGE system and diabetic nephropathy. J Am Soc Nephrol. 2003 Aug;14(8 Suppl 3):S259–S263.
  8. Stratton IM, Adler AI, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ. 2000 Aug 12;321(7258):405–12.
  9. Vincent AM, McLean LL, et al. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 2005 Apr;19(6):638–40.
  10. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001 Apr;280(4):C719–C741.
  11. Luque RM, Kineman RD. Impact of Obesity on the Growth Hormone (GH)-Axis: Evidence for a Direct Inhibitory Effect of Hyperinsulinemia on Pituitary Function. Endocrinology. 2006 Mar 2; [Epub ahead of print]
  12. Tran TT, Naigamwalla D, et al. Hyperinsulinemia, But Not Other Factors Associated with Insulin Resistance, Acutely Enhances Colorectal Epithelial Proliferation In Vivo. Endocrinology. 2006 Jan 12; [Epub ahead of print]
  13. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002 Feb 7;346(6):393–403.
  14. Diabetes Prevention Program Research Group. Within-trial cost-effectiveness of lifestyle intervention or metformin for the primary prevention of type 2 diabetes. Diabetes Care. 2003 Sep 1;26(9):2518–23.
  15. Muniyappa R, El-Atat F, et al. The Diabetes Prevention Program. Curr Diab Rep. 2003 Jun;3(3):221–2.
  16. Diabetes Prevention Program Research Group. The Diabetes Prevention Program: Baseline characteristics of the randomized cohort. Diabetes Care. 2000 Nov 1;23(11):1619–29.
  17. Sheard NF. Moderate changes in weight and physical activity can prevent or delay the development of type 2 diabetes mellitus in susceptible individuals. Nutr Rev. 2003 Feb;61(2):76–9.
  18. Sheard NF, Clark NG, et al. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: A statement by the American Diabetes Association. Diabetes Care. 2004 Sep 1;27(9):2266–71.
  19. Anderson RA, Broadhurst CL, et al. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J Agric Food Chem. 2004 Jan 14;52(1):65–70.
  20. Hodge AM, English DR, et al. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care. 2004 Nov 1;27(11):2701–6.
  21. Khaw KT, Barrett-Connor E. Dietary potassium and blood pressure in a population. Am J Clin Nutr. 1984 Jun;39(6):963–8.
  22. Norbiato G, Bevilacqua M, et al. Effects of potassium supplementation on insulin binding and insulin action in human obesity: Protein-modified fast and refeeding. Eur J Clin Invest. 1984 Dec;14(6):414–9.
  23. Mensink M, Blaak EE, et al. Lifestyle intervention according to general recommendations improves glucose tolerance. Obes Res. 2003 Dec;11(12):1588–96.
  24. Sato Y. Diabetes and life-styles: Role of physical exercise for primary prevention. British Journal of Nutrition. 2000 Dec;84(6 Suppl 2):187–90.
  25. Sato Y, Nagasaki M, et al. Physical exercise improves glucose metabolism in lifestyle-related diseases. Exp Biol Med (Maywood). 2003 Nov;228(10):1208–12.
  26. Joshi SR. Metformin: old wine in new bottle--evolving technology and therapy in diabetes. J Assoc Physicians India. 2005 Nov;53:963-72.
  27. Meriden T. Progress with thiazolidinediones in the management of type 2 diabetes mellitus. Clin Ther. 2004 Feb;26(2):177–90.
  28. Isley WL. Hepatotoxicity of thiazolidinediones. Expert Opin Drug Saf. 2003 Nov;2(6):581–6.
  29. Marcy TR, Britton ML, et al. Second-generation thiazolidinediones and hepatotoxicity. Ann Pharmacother. 2004 Sep;38(9):1419–23.
  30. Jacob S, Henriksen EJ, et al. Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneimittelforschung. 1995 Aug;45(8):872–4.
  31. Jacob S, Ruus P, et al. Oral administration of RAC-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: A placebo-controlled pilot trial. Free Radic Biol Med. 1999 Aug;27(3-4):309–14.
  32. Kawabata T, Packer L. Alpha-lipoate can protect against glycation of serum albumin, but not low density lipoprotein. Biochem Biophys Res Commun. 1994 Aug 30;203(1):99–104.
  33. Melhem MF, Craven PA, et al. Alpha-lipoic acid attenuates hyperglycemia and prevents glomerular mesangial matrix expansion in diabetes. J Am Soc Nephrol. 2002 Jan;13(1):108–16.
  34. Nagamatsu M, Nickander KK, et al. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 1995 Aug;18(8):1160–7.
  35. Song KH, Lee WJ, et al. Alpha-lipoic acid prevents diabetes mellitus in diabetes-prone obese rats. Biochem Biophys Res Commun. 2005 Jan 7;326(1):197–202.
  36. Suzuki YJ, Tsuchiya M, et al. Lipoate prevents glucose-induced protein modifications. Free Radic Res Commun. 1992;17(3):211–7.
  37. Doggrell SA. Alpha-lipoic acid, an anti-obesity agent? Expert Opin Investig Drugs. 2004 Dec;13(12):1641–3.
  38. Ametov AS, Barinov A, et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: The SYDNEY trial. Diabetes Care. 2003 Mar;26(3):770–6.
  39. Cameron NE, Cotter MA, et al. Effects of alpha-lipoic acid on neurovascular function in diabetic rats: Interaction with essential fatty acids. Diabetologia. 1998 Apr;41(4):390–9.
  40. Hounsom L, Horrobin DF, et al. A lipoic acid-gamma linolenic acid conjugate is effective against multiple indices of experimental diabetic neuropathy. Diabetologia. 1998 Jul;41(7):839–43.
  41. Ziegler D, Gries FA. Alpha-lipoic acid in the treatment of diabetic peripheral and cardiac autonomic neuropathy. Diabetes. 1997a Sep;46 Suppl 2:S62–S66.
  42. Ziegler D, Schatz H, et al. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients: A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care. 1997b Mar;20(3):369–73.
  43. Zhang H, Osada K, et al. A high biotin diet improves the impaired glucose tolerance of long-term spontaneously hyperglycemic rats with non-insulin-dependent diabetes mellitus. J Nutr Sci Vitaminol (Tokyo). 1996 Dec;42(6):517–26.
  44. Furukawa Y. [Enhancement of glucose-induced insulin secretion and modification of glucose metabolism by biotin]. Nippon Rinsho. 1999 Oct;57(10):2261–9. Review.
  45. Mingrone G. Carnitine in type 2 diabetes. Ann N Y Acad Sci. 2004 Nov;1033:99–107. Review.
  46. Turpeinen AK, Kuikka J, et al. Long-term effect of acetyl-L-carnitine on myocardial 123I-M IBG uptake in patients with diabetes. Clin Auton Res. 2005;10:13–6.
  47. Janssen B, Hohendel D, et al. Carnosine as a protective factor in diabetic nephropathy: Association with a leucine repeat of the carnosinase gene CNDP1. Diabetes. 2005 Aug;54(8):2320–7.
  48. Yan H, Harding JJ. Carnosine protects against the inactivation of esterase induced by glycation and a steroid. Biochim Biophys Acta. 2005 Jun 30;1741(1-2):120–6.
  49. McFarland GA, Holliday R. Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res. 1994 Jun;212(2):167-75.
  50. Jakus V. The role of nonenzymatic glycation and glyco-oxidation in the development of diabetic vascular complications. Cesk Fysiol. 2003 May;52(2):51-65.
  51. Hipkiss AR. Glycation, ageing and carnosine: are carnivorous diets beneficial? Mech Ageing Dev. 2005 Oct;126(10):1034-9.
  52. Nagai K, Niijima A, Yamano T, et al. Possible role of L-carnosine in the regulation of blood glucose through controlling autonomic nerves. Exp Biol Med (Maywood). 2003 Nov;228(10):1138-45.
  53. Hipkiss AR, Brownson C, Carrier MJ. Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups. Mech Ageing Dev. 2001 Sep 15;122(13):1431-45.
  54. Aldini G, Facino RM, Beretta G, Carini M. Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives. Biofactors. 2005;24(1-4):77-87.
  55. Lee YT, Hsu CC, Lin MH, Liu KS, Yin MC. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol. 2005 Apr 18;513(1-2):145-50.
  56. Rashid I, van Reyk DM, Davies MJ. Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro. FEBS Lett. 2007 Mar 6;581(5):1067-70.
  57. Yan H, Guo Y, Zhang J, Ding Z, Ha W, Harding JJ. Effect of carnosine, aminoguanidine, and aspirin drops on the prevention of cataracts in diabetic rats. Mol Vis. 2008;14:2282-91.
  58. Pfister F, Riedl E, Wang Q, et al. Oral carnosine supplementation prevents vascular damage in experimental diabetic retinopathy. Cell Physiol Biochem. 2011;28(1):125-36.
  59. Kamei J, Ohsawa M, Miyata S, Tanaka S. Preventive effect of L-carnosine on changes in the thermal nociceptive threshold in streptozotocin-induced diabetic mice. Eur J Pharmacol. 2008 Dec 14;600(1-3):83-6.
  60. Bahijiri SM, Mira SA, et al. The effects of inorganic chromium and brewer’s yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes. Saudi Med J. 2000 Sep;21(9):831–7.
  61. Ghosh D, Bhattacharya B, et al. Role of chromium supplementation in Indians with type 2 diabetes mellitus. J Nutr Biochem. 2002 Nov;13(11):690–7.
  62. Jovanovic L, Gutierrez M, et al. Chromium supplementation for women with gestational diabetes mellitus. J Trace Elem Med Biol. 1999;12:91–7.
  63. Anderson RA, Cheng N, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes. 1997 Nov;46(11):1786–91.
  64. Bhattacharyya S, Pal D, Ghosal S, et al. Effects of adjunct therapy of a proprietary herbo-chromium supplement in type 2 diabetes: A randomized clinical trial. Int J Diab Dev Ctries. 2010 Jul-Sep;30(3):153-61.
  65. Hodgson JM, Watts GF, et al. Coenzyme Q10 improves blood pressure and glycaemic control: A controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr. 2002 Nov;56(11):1137–42.
  66. Watts GF, Playford DA, et al. Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus. Diabetologia. 2002 Mar;45(3):420–6.
  67. Playford DA, Watts GF, et al. Combined effect of coenzyme Q10 and fenofibrate on forearm microcirculatory function in type 2 diabetes. Atherosclerosis. 2003 May;168(1):169–79.
  68. Al-Thakafy HS, Khoja SM, et al. Alterations of erythrocyte free radical defense system, heart tissue lipid peroxidation, and lipid concentration in streptozotocin-induced diabetic rats under coenzyme Q10 supplementation. Saudi Med J. 2004 Dec;25(12):1824–30.
  69. Kucharska J, Braunova Z, et al. Deficit of coenzyme Q in heart and liver mitochondria of rats with streptozotocin-induced diabetes. Physiol Res. 2000;49(4):411–8.
  70. Yamashita R, Saito T, et al. Effects of dehydroepiandrosterone on gluconeogenic enzymes and glucose uptake in human hepatoma cell line, HepG2. Endocr J. 2005 Dec;52(6):727–33.
  71. Medina MC, Souza LC, et al. Dehydroepiandrosterone increases beta-cell mass and improves the glucose-induced insulin secretion by pancreatic islets from aged rats. FEBS Lett. 2006 Jan 9;580(1):285–90.
  72. Boudou P, Sobngwi E, et al. Hyperglycaemia acutely decreases circulating dehydroepiandrosterone levels in healthy men. Clin Endocrinol (Oxf). 2006 Jan;64(1):46–52.
  73. Kapoor D, Malkin CJ, et al. Androgens, insulin resistance and vascular disease in men. Clin Endocrinol (Oxf). 2005 Sep;63(3):239–50. Review.
  74. Petersen M, Pedersen H, et al. Effect of fish oil versus corn oil supplementation on LDL and HDL subclasses in type 2 diabetic patients. Diabetes Care. 2002 Oct;25(10):1704–8.
  75. Ebbesson SO, Risica PM, et al. Omega-3 fatty acids improve glucose tolerance and components of the metabolic syndrome in Alaskan Eskimos: The Alaska Siberia project. Int J Circumpolar Health. 2005 Sep;64(4):396–408.
  76. Keen H, Payan J, et al. Treatment of diabetic neuropathy with gamma-linolenic acid. The Gamma-Linolenic Acid Multicenter Trial Group. Diabetes Care. 1993 Jan;16(1):8–15.
  77. Chandalia M, Garg A, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000 May 11;342(19):1392-8.
  78. Huang CY, Zhang MY, Peng SS, et al. Effect of Konjac food on blood glucose level in patients with diabetes. Biomed Environ Sci. 1990 Jun;3(2):123-31.
  79. Walsh DE, Yaghoubian V, Behforooz A. Effect of glucomannan on obese patients: a clinical study. Effect of glucomannan on obese patients: a clinical study. Int J Obes. 1984;8(4):289-93.
  80. Biancardi G, Palmiero L, Ghirardi PE. Glucomannan in the treatment of overweight patients with osteoarthritis. Curr Ther Res. 1989 Nov;46(5):908-12.
  81. Mahesh T, Menon VP. Quercetin alleviates oxidative stress in streptozotocin-induced diabetic rats. Phytother Res. 2004 Feb;18(2):123–7.
  82. Eibl NL, Kopp HP, et al. Hypomagnesemia in type II diabetes: Effect of a 3-month replacement therapy. Diabetes Care. 1995 Feb;18(2):188–92.
  83. Elamin A, Tuvemo T. Magnesium and insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1990 Nov;10(3):203–9.
  84. Tosiello L. Hypomagnesemia and diabetes mellitus: A review of clinical implications. Arch Intern Med. 1996 Jun 10;156(11):1143–8.
  85. Rodriguez-Moran M, Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: A randomized double-blind controlled trial. Diabetes Care. 2003 Apr;26(4):1147–52.
  86. Xia Z, Nagareddy PR, et al. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats. Free Radic Res. 2006 Feb;40(2):175–84.
  87. Neri S, Signorelli SS, et al. Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: A single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clin Ther. 2005 Nov;27(11):1764–73.
  88. Soto C, Mena R, et al. Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Sci. 2004 Sep 17;75(18):2167–80.
  89. Velussi M, Cernigoi AM, et al. Long-term (12 months) treatment with an anti-oxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. J Hepatol. 1997 Apr;26(4):871–9.
  90. Sancetta SM, Ayres PR, et al. The use of vitamin B12 in the management of the neurological manifestations of diabetes mellitus, with notes on the administration of massive doses. Ann Int Med. 1951;35:1028–48.
  91. Meyers CD, Kamanna VS, et al. Niacin therapy in atherosclerosis. Curr Opin Lipidol. 2004 Dec;15(6):659–65. Review.
  92. Pocoit F, Reimers JL, et al. Nicotinamide: Biological actions and therapeutic potential in diabetes prevention. Diagn Cytopathol. 1993;36:574–6.
  93. Pozzilli P, Andreani D. The potential role of nicotinamide in the secondary prevention of IDDM. Diabetes Metabol Rev. 1993;9:219–30.
  94. Corti A, Ferrari SM, et al. UV light increases vitamin C uptake by bovine lens epithelial cells. Mol Vis. 2004 Aug 6;10:533–6.
  95. Peponis V, Bonovas S, et al. Conjunctival and tear film changes after vitamin C and E administration in non-insulin dependent diabetes mellitus. Med Sci Monit. 2004 May;10(5):CR213–CR217.
  96. Krone CA, Ely JT. Ascorbic acid, glycation, glycohemoglobin and aging. Med Hypotheses. 2004;62(2):275–9.
  97. Will JC, Byers T. Does diabetes mellitus increase the requirement for vitamin C? Nutr Rev. 1996 Jul;54(7):193–202.
  98. Antoniades C, Tousoulis D, et al. Vascular endothelium and inflammatory process, in patients with combined type 2 diabetes mellitus and coronary atherosclerosis: The effects of vitamin C. Diabet Med. 2004 Jun;21(6):552–8.
  99. Farvid MS, Jalali M, et al. The impact of vitamins and/or mineral supplementation on blood pressure in type 2 diabetes. J Am Coll Nutr. 2004 Jun;23(3):272–9.
  100. Mullan BA, Young IS, et al. Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension. 2002 Dec;40(6):804–9.
  101. Mullan BA, Ennis CN, et al. Protective effects of ascorbic acid on arterial hemodynamics during acute hyperglycemia. Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1262–H1268.
  102. Montonen J, Knekt P, et al. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care. 2004 Feb;27(2):362–6.
  103. Manzella D, Barbieri M, et al. Chronic administration of pharmacologic doses of vitamin E improves the cardiac autonomic nervous system in patients with type 2 diabetes. Am J Clin Nutr. 2001 Jun;73(6):1052–7.
  104. Tutuncu NB, Bayraktar M, et al. Reversal of defective nerve conduction with vitamin E supplementation in type 2 diabetes: A preliminary study. Diabetes Care. 1998 Nov;21(11):1915–8.
  105. Kahler W, Kuklinski B, et al. [Diabetes mellitus—a free radical-associated disease. Results of adjuvant antioxidant supplementation]. Z Gesamte Inn Med. 1993 May;48(5):223–32.
  106. Paolisso G, D’Amore A, et al. Daily vitamin E supplements improve metabolic control but not insulin secretion in elderly type II diabetic patients. Diabetes Care. 1993a Nov;16(11):1433–7.
  107. Paolisso G, D’Amore A, et al. Pharmacologic doses of vitamin E improve insulin action in healthy subjects and non-insulin-dependent diabetic patients. Am J Clin Nutr. 1993b May;57(5):650–6.
  108. Paolisso G, Di Maro G, et al. Pharmacological doses of vitamin E and insulin action in elderly subjects. Am J Clin Nutr. 1994;59:1291–6.
  109. Seddon JM, Christen WG, et al. The use of vitamin supplements and the risk of cataract among US male physicians. Am J Public Health. 1994;84:788–92.
  110. Imparl-Radosevich J, Deas S, et al. Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: Implications for cinnamon regulation of insulin signaling. Horm Res. 1998 Sep;50(3):177–82.
  111. Stoecker BJ, Zhan Z, Luo R, et al. Cinnamon extract lowers blood glucose in hyperglycemic subjects. FASEB J. 2010; 24:722.1.
  112. Mang B, Wolters M, Schmitt B, et al. Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest. 2006 May;36(5):340-4.
  113. Kim KY, Nguyen TH, Kurihara H, Kim SM. Alpha-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J Food Sci. 2010 Jun;75(5):H145-50.
  114. Apostolidis E, Lee CM. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated alpha-glucosidase and alpha-amylase inhibition. J Food Sci. 2010 Apr;75(3):H97-102.
  115. Kim KY, Nam KA, Kurihara H, Kim SM. Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry. 2008 Nov;69(16):2820-5.
  116. Zhang J, Tiller C, Shen J, et al. Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum. Can J Physiol Pharmacol. 2007 Nov;85(11):1116-23.
  117. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol. 2009 Aug 1;615(1-3):252-6.
  118. Lamela M, Anca J, Villar R, Otero J, Calleja JM. Hypoglycemic activity of several seaweed extracts. J Ethnopharmacol. 1989 Nov;27(1-2):35-43.
  119. Lamarche B, Paradis M-V, and Couture P. Study of the acute impact of polyphenols from brown seaweeds on post challenge glucose concentrations in healthy men and women. FASEB journal, 24. Meeting Abstract Supplement No. 209.4.
  120. Oben JE, Blum K. Inhibition of OB131 Irvingia gabonensis seed extract (gabonectin™) on adipogenesis as mediated via down regulation of the PPARγ and leptin genes and up-regulation of the adiponectin gene. Lipids Health Dis. 2008a. (submitted)
  121. Ngondi JL, Djiotsa EJ, Fossouo Z, Oben J. Hypoglycaemic effect of the methanol extract of irvingia gabonensis seeds on streptozotocin diabetic rats. Afr J Trad CAM. 2006 3:74–7.
  122. Adamson I, Okafor C, Abu-Bakare A. A supplement of Dikanut (Irvingia gabonesis) improves treatment of type II diabetics. West Afr J Med. 1990 Apr-Jun;9(2):108-15.
  123. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002 53:409-435.
  124. Fasshauer M, Paschke R, Stumvoll M. Adiponectin, obesity, and cardiovascular disease. Biochimie. 2004 Nov;86(11):779-84.
  125. Shand BI, Scott RS, Elder PA, George PM. Plasma adiponectin in overweight, nondiabetic individuals with or without insulin resistance. Diabetes Obes Metab. 2003 Sep;5(5):349-53.
  126. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001 7:941-946.
  127. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005 May;26(3):439-51.
  128. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004 Jun;89(6):2548-56.
  129. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001 May;50(5):1126-33.
  130. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999 Apr 2;257(1):79-83.
  131. Ryo M, Nakamura T, Kihara S, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004 Nov;68(11):975-81.
  132. Yatagai T, Nagasaka S, Taniguchi A, et al. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism. 2003 Oct;52(10):1274-8.
  133. Yamamoto Y, Hirose H, Saito I, Nishikai K, Saruta T. Adiponectin, an adipocyte-derived protein, predicts future insulin resistance: two-year follow-up study in Japanese population. J Clin Endocrinol Metab. 2004 Jan;89(1):87-90.
  134. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000 Jun 1;14(11):1293-307.
  135. Gustafson B, Jack MM, Cushman SW, Smith U. Adiponectin gene activation by thiazolidinediones requires PPAR gamma 2, but not C/EBP alpha-evidence for differential regulation of the aP2 and adiponectin genes. Biochem Biophys Res Commun. 2003 Sep 5;308(4):933-9.
  136. Oben JE, Ngondi JL, Momo CN, Agbor GA, Sobgui CS. The use of a Cissus quadrangularis/Irvingia gabonensis combination in the management of weight loss: a double-blind placebo-controlled study. Lipids Health Dis. 2008b Mar 31;7:12.
  137. Mosca M, Boniglia C, Carratu B, Giammarioli S, Nera V, Sanzini E. Determination of alpha-amylase inhibitor activity of phaseolamin from kidney bean (Phaseolus vulgaris) in dietary supplements by HPAEC-PAD. Anal Chim Acta. 2008 Jun 9;617(1-2):192-5.
  138. Obiro WC, Zhang T, Jiang B. The nutraceutical role of the Phaseolus vulgaris alpha-amylase inhibitor. Br J Nutr. 2008 Jul;100(1):1-12.
  139. Preuss HG, Echard B, Bagchi D, Stohs S. Inhibition by natural dietary substances of gastrointestinal absorption of starch and sucrose in rats and pigs: 1. Acute studies. Int J Med Sci. 2007;4(4):196-202.
  140. Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE. White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats. Br J Nutr. 2006 Sep;96(3):539-44.
  141. Udani JK, Singh BB, Barrett ML, Preuss HG. Lowering the glycemic index of white bread using a white bean extract. Nutr J. 2009;8:52.
  142. Dilawari JB, Kamath PS, Batta RP, Mukewar S, Raghavan S. Reduction of postprandial plasma glucose by Bengal gram dal (Cicer arietinum) and rajmah (Phaseolus vulgaris). Am J Clin Nutr. 1981 Nov;34(11):2450-3.
  143. Charles-Bernard M, Kraehenbuehl K, et al. Interactions between volatile and nonvolatile coffee components. 1. Screening of nonvolatile components. J Agric Food Chem. 2005 Jun 1;53(11):4417–25.
  144. Basu R, Chandramouli V, et al. Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes. 2005 Jul;54(7):1942–8.
  145. Hemmerle H, Burger HJ, et al. Chlorogenic acid and synthetic chlorogenic acid derivatives: Novel inhibitors of hepatic glucose-6-phosphate translocase. J Med Chem. 1997 Jan 17;40(2):137–45.
  146. Abidoff MT. Special clinical report on effects of glucose-6-phosphatase on human subjects. Russian Ministry of Health, Moscow, 1999. Unpublished study.
  147. Johnston KL, Clifford MN, et al. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr. 2003 Oct;78(4):728–33.
  148. Nagendran MV. Effect of green coffee bean extract (GCE), High in Chlorogenic Acids, on Glucose Metabolism. Poster presentation number: 45-LB-P. Obesity 2011, the 29th Annual Scientific Meeting of the Obesity Society. Orlando, Florida. October 1-5, 2011.
  149. Breithaupt-Grogler K, Ling M, et al. Protective effect of chronic garlic intake on elastic properties of aorta in the elderly. Circulation. 1997 Oct 21;96(8):2649–55.
  150. Efendy JL, Simmons DL, et al. The effect of the aged garlic extract, ‘Kyolic,’ on the development of experimental atherosclerosis. Atherosclerosis. 1997 Jul 11;132(1):37–42.
  151. Koscielny J, Klussendorf D, et al. The antiatherosclerotic effect of Allium sativum. Atherosclerosis. 1999 May;144(1):237–49.
  152. Turner B, Molgaard C, et al. Effect of garlic (Allium sativum) powder tablets on serum lipids, blood pressure and arterial stiffness in normo-lipidaemic volunteers: A randomised, double-blind, placebo-controlled trial. Br J Nutr. 2004 Oct;92(4):701–6.
  153. Dhawan V, Jain S. Effect of garlic supplementation on oxidized low density lipoproteins and lipid peroxidation in patients of essential hypertension. Mol Cell Biochem. 2004 Nov;266(1–2):109–15.
  154. Elkayam A, Mirelman D, et al. The effects of allicin on weight in fructose-induced hyperinsulinemic, hyperlipidemic, hypertensive rats. Am J Hypertens. 2003 Dec;16(12):1053–6.
  155. Auer W, Eiber A, et al. Hypertension and hyperlipidaemia: Garlic helps in mild cases. Br J Clin Pract Suppl. 1990 Aug;69:3–6.
  156. Sharifi AM, Darabi R, et al. Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat. J Ethnopharmacol. 2003 Jun;86(2-3):219–24.
  157. Silagy CA, Neil HA. A meta-analysis of the effect of garlic on blood pressure. J Hypertens. 1994 Apr;12(4):463–8.
  158. Wilburn AJ, King DS, et al. The natural treatment of hypertension. J Clin Hypertens (Greenwich). 2004 May;6(5):242–8.
  159. Durak I, Kavutcu M, et al. Effects of garlic extract consumption on blood lipid and oxidant/antioxidant parameters in humans with high blood cholesterol. J Nutr Biochem. 2004 Jun;15(6):373–7.
  160. Gardner CD, Chatterjee LM, et al. The effect of a garlic preparation on plasma lipid levels in moderately hypercholesterolemic adults. Atherosclerosis. 2001 Jan;154(1):213–20.
  161. Holzgartner H, Schmidt U, et al. Comparison of the efficacy and tolerance of a garlic preparation vs. bezafibrate. Arzneimittelforschung. 1992 Dec;42(12):1473–7.
  162. Isaacsohn JL, Moser M, et al. Garlic powder and plasma lipids and lipoproteins: A multicenter, randomized, placebo-controlled trial. Arch Intern Med. 1998 Jun 8;158(11):1189–94.
  163. Kannar D, Wattanapenpaiboon N, et al. Hypocholesterolemic effect of an enteric-coated garlic supplement. J Am Coll Nutr. 2001 Jun;20(3):225–31.
  164. Kris-Etherton PM, Etherton TD, et al. Recent discoveries in inclusive food-based approaches and dietary patterns for reduction in risk for cardiovascular disease. Curr Opin Lipidol. 2002 Aug;13(4):397–407.
  165. Mader FH. Treatment of hyperlipidaemia with garlic-powder tablets: Evidence from the German Association of General Practitioners’ multicentric placebo-controlled double-blind study. Arzneimittelforschung. 1990 Oct;40(10):1111–6.
  166. Neil HA, Silagy CA, et al. Garlic powder in the treatment of moderate hyperlipidaemia: A controlled trial and meta-analysis. J R Coll Physicians Lond. 1996 Jul;30(4):329–34.
  167. Steiner M, Khan AH, et al. A double-blind crossover study in moderately hypercholesterolemic men that compared the effect of aged garlic extract and placebo administration on blood lipids. Am J Clin Nutr. 1996 Dec;64(6):866–70.
  168. Superko HR, Krauss RM. Garlic powder, effect on plasma lipids, postprandial lipemia, low-density lipoprotein particle size, high-density lipoprotein subclass distribution and lipoprotein(a). J Am Coll Cardiol. 2000 Feb;35(2):321–6.
  169. Warshafsky S, Kamer RS, et al. Effect of garlic on total serum cholesterol: A meta-analysis. Ann Intern Med. 1993 Oct 1;119(7 Pt 1):599–605.
  170. Okuda T, Kimura Y, et al. Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Chem Pharm Bull (Tokyo). 1983 May;31(5):1625–31.
  171. Crespy V, Williamson G. A review of the health effects of green tea catechins in vivo animal models. J Nutr. 2004 Dec;134(12 Suppl):3431S–3440S.
  172. Kim MJ, Ryu GR, et al. Inhibitory effects of epicatechin on interleukin-1beta-induced inducible nitric oxide synthase expression in RINm5F cells and rat pancreatic islets by down-regulation of NF-kappaB activation. Biochem Pharmacol. 2004 Nov 1;68(9):1775–85.
  173. Song EK, Hur H, et al. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res. 2003 Jul;26(7):559–63.
  174. Murase T, Nagasawa A, et al. Beneficial effects of tea catechins on diet-induced obesity: Stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord. 2002 Nov;26(11):1459–64.
  175. Hung PF, Wu BT, et al. The antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the Erk and Cdk2 pathways. Am J Physiol Cell Physiol. 2005 May;288(5):C1094–108.
  176. Zittermann A, Schleithoff SS, Koerfer R. Vitamin D and vascular calcification. Curr Opin Lipidol. 2007 Feb;18(1):41-6.
  177. Targher G, Bertolini L, Padovani R, et al. Serum 25-hydroxyvitamin D3 concentrations and carotid artery intima-media thickness among type 2 diabetic patients. Clin Endocrinol (Oxf). 2006 Nov;65(5):593-7.
  178. Levin A, Li YC. Vitamin D and its analogues: do they protect against cardiovascular disease in patients with kidney disease? Kidney Int. 2005 Nov;68(5):1973-81.
  179. Levin A, Li YC. Vitamin D and its analogues: do they protect against cardiovascular disease in patients with kidney disease? Kidney Int. 2005 Nov;68(5):1973-81.
  180. Pittas AG, Harris SS, Stark PC, wson-Hughes B. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in non-diabetic adults. Diabetes Care. 2007 Feb 2.
  181. Punkt K, Psinia I, et al. Effects on skeletal muscle fibres of diabetes and Ginkgo biloba extract treatment. Acta Histochem. 1999 Feb;101(1):53–69.
  182. Tanaka S, Han LK, et al. [Effects of the flavonoid fraction from Ginkgo biloba extract on the postprandial blood glucose elevation in rats]. Yakugaku Zasshi. 2004 Sep;124(9):605-11.
  183. Doly M, Droy-Lefaix MT, et al. Effect of Ginkgo biloba extract on the electrophysiology of the isolated diabetic rat retina. In: Funfgeld EW, Ed. Rokan (Ginkgo biloba)—recent results in pharmacology and clinic. New York: Springer-Verlag; 1988:83–90.
  184. Huang SY, Jeng C, et al. Improved haemorrheological properties by Ginkgo biloba extract (Egb 761) in type 2 diabetes mellitus complicated with retinopathy. Clin Nutr. 2004 Aug;23(4):615–21.
  185. Kudolo GB. The effect of 3-month ingestion of Ginkgo biloba extract (EGb 761) on pancreatic beta-cell function in response to glucose loading in individuals with non-insulin-dependent diabetes mellitus. J Clin Pharmacol. 2001 Jun;41(6):600–11.
  186. Prett S, Matthews K. Super Foods: Fourteen Foods That Will Change Your Life. New York, NY: Harper Collins; 2005:52.
  187. Johnson MH, Lucius A, Meyer T, de Mejia EG. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of alpha-amylase and alpha-glucosidase by highbush blueberry (Vaccinium corombosum). J Agric Food Chem. 2011 Aug 24;59(16):8923-30.
  188. Melzig MF, Funke I. Inhibitors of alpha-amylase from plants--a possibility to treat diabetes mellitus type II by phytotherapy? Wien Med Wochenschr. 2007;157(13-14):320-4.
  189. Vuong T, Benhaddou-Andaloussi A, Brault A, et al. Antiobesity and antidiabetic effects of biotransformed blueberry juice in KKA(y) mice. Int J Obes (Lond). 2009 Oct;33(10):1166-73.
  190. Abidov M, Ramazanov A, Jimenez Del Rio M, Chkhikvishvili I. Effect of Blueberin on fasting glucose, C-reactive protein and plasma aminotransferases, in female volunteerswith diabetes type 2: double-blind, placebo controlled clinical study. Georgian Med News. 2006 Dec;(141):66-72.
  191. Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr. 2010 Mar;140(3):527-33.
  192. Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr. 2010 Oct;140(10):1764-8.
  193. Cohen-Boulakia F, Valensi PE, et al. In vivo sequential study of skeletal muscle capillary permeability in diabetic rats: Effect of anthocyanosides. Metabolism. 2000 Jul;49(7):880–5.
  194. Petlevski R, Hadzija M, et al. Effect of ‘antidiabetis’ herbal preparation on serum glucose and fructosamine in NOD mice. J Ethnopharmacol. 2001 May;75(2-3):181–4.
  195. Petlevski R, Hadzija M, et al. Glutathione S-transferases and malondialdehyde in the liver of NOD mice on short-term treatment with plant mixture extract P-9801091. Phytother Res. 2003 Apr;17(4):311–4.
  196. Bone K. Bilberry: The vision herb. MediHerb Prof Rev. 1997;59:1–4.
  197. Scharrer A, Ober M. [Anthocyanosides in the treatment of retinopathies (author’s transl)]. Klin Monatsbl Augenheilkd. 1981 May;178(5):386–9.