Your Trusted Brand for Over 35 Years

Life Extension Magazine

<< Back to February 2011


February 2011

Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity.

Epidemiological data suggest that consumption of fruits and vegetables has been associated with a lower incidence of cancer. Cyanidin-3-glucoside (C3G), a compound found in blackberry and other food products, was shown to possess chemopreventive and chemotherapeutic activity in the present study. In cultured JB6 cells, C3G was able to scavenge ultraviolet B-induced *OH and O2-* radicals. In vivo studies indicated that C3G treatment decreased the number of non-malignant and malignant skin tumors per mouse induced by 12-O-tetradecanolyphorbol-13-acetate (TPA) in 7,12-dime-thylbenz[a]anthracene-initiated mouse skin. Pretreatment of JB6 cells with C3G inhibited UVB- and TPA-induced transactivation of NF-kappaB and AP-1 and expression of cyclooxygenase-2 and tumor necrosis factor-alpha. These inhibitory effects appear to be mediated through the inhibition of MAPK activity. C3G also blocked TPA-induced neoplastic transformation in JB6 cells. In addition, C3G inhibited proliferation of a human lung carcinoma cell line, A549. Animal studies showed that C3G reduced the size of A549 tumor xenograft growth and significantly inhibited metastasis in nude mice. Mechanistic studies indicated that C3G inhibited migration and invasion of A549 tumor cells. These finding demonstrate for the first time that a purified compound of anthocyanin inhibits tumor promoter-induced carcinogenesis and tumor metastasis in vivo.

J Biol Chem. 2006 Jun 23;281(25):17359-68

Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis—relationship with tissue anthocyanin levels.

Anthocyanins are dietary flavonoids, which can prevent carcinogen-induced colorectal cancer in rats. Here, the hypotheses were tested that Mirtoselect, an anthocyanin mixture from bilberry, or isolated cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, interfere with intestinal adenoma formation in the Apc(Min) mouse, a genetic model of human familial adenomatous polyposis, and that consumption of C3G or Mirtoselect generates measurable levels of anthocyanins in the murine biophase. Apc(Min) mice ingested C3G or Mirtoselect at 0.03, 0.1 or 0.3% in the diet for 12 weeks, and intestinal adenomas were counted. Plasma, urine and intestinal mucosa were analyzed for presence of anthocyanins by high-pressure liquid chromatography with detection by UV spectrophotometry (520 nm) or tandem mass spectrometry (multiple reaction monitoring). Ingestion of either C3G or Mirtoselect reduced adenoma load dose-dependently. At the highest doses of C3G and Mirtoselect adenoma numbers were decreased by 45% (p < 0.001) or 30% (p < 0.05), respectively, compared to controls. Anthocyanins were found at the analytical detection limit in the plasma and at quantifiable levels in the intestinal mucosa and urine. Anthocyanin glucuronide and methyl metabolites were identified in intestine and urine. Total anthocyanin levels in mice on C3G or Mirtoselect were 43 ng and 8.1 microg/g tissue, respectively, in the intestinal mucosa, and 7.2 and 12.3 microg/ml in the urine. The efficacy of C3G and Mirtoselect in the Apc(Min) mouse renders the further development of anthocyanins as potential human colorectal cancer chemopreventive agents worthwhile.

Int J Cancer. 2006 Nov 1;119(9):2213-20

Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-alpha-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation.

Anthocyanins are naturally occurring plant pigments and exhibit an array of pharmacological properties. Our previous study showed that black rice pigment extract rich in anthocyanin prevents and ameliorates high-fructose-induced insulin resistance in rats. In present study, cyanidin 3-glucoside (Cy-3-G), a typical anthocyanin most abundant in black rice was used to examine its protective effect on insulin sensitivity in 3T3-L1 adipocytes exposed to H(2)O(2) (generated by adding glucose oxidase to the medium) or tumor necrosis factor alpha (TNF-alpha). Twelve-hour exposure of 3T3-L1 adipocytes to H(2)O(2) or TNF-alpha resulted in the increase of c-Jun NH(2)-terminal kinase (JNK) activation and insulin receptor substrate 1 (IRS1) serine 307 phosphorylation, concomitantly with the decrease in insulin-stimulated IRS1 tyrosine phosphorylation and cellular glucose uptake. Blocking JNK expression using RNA interference efficiently prevented the H(2)O(2)- or TNF-alpha-induced defects in insulin action. Pretreatment of cells with Cy-3-G reduced the intracellular production of reactive oxygen species, the activation of JNK, and attenuated H(2)O(2)- or TNF-alpha-induced insulin resistance in a dose-dependent manner. In parallel, N-acetyl-cysteine, an antioxidant compound, did not exhibit an attenuation of TNF-alpha-induced insulin resistance. Taken together, these results indicated that Cy-3-G exerts a protective role against H(2)O(2)- or TNF-alpha-induced insulin resistance in 3T3-L1 adipocytes by inhibiting the JNK signal pathway.

Biochem Pharmacol. 2008 Mar 15;75(6):1393-401

Gastroprotective effect of cyanidin 3-glucoside on ethanol-induced gastric lesions in rats.

This study investigated the in vivo protective effect of cyanidin 3-glucoside (C3G) against ethanol-induced gastric lesions in rats. The experimental rats were treated with 80% ethanol after pretreatment with various doses of C3G (4 and 8 mg/kg of body weight), and the control rats received only 80% ethanol. Oral pretreatment with C3G significantly inhibited the formation of ethanol-induced gastric lesions and the elevation of the lipid peroxide level. In addition, pretreatment with C3G significantly increased the level of glutathione and the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in gastric tissues. These results suggest that the gastroprotective effect of C3G removes the ethanol-induced lipid peroxides and free radicals and that it may offer a potential remedy for the treatment of gastric lesions.

Alcohol. 2008 Dec;42(8):683-7

Isolation and free-radical-scavenging properties of cyanidin 3-O-glycosides from the fruits of Ribes biebersteinii Berl.

The reversed-phase preparative high performance liquid chromatographic purification of the methanol extract of the fruits of Ribes biebersteinii Berl. (Grossulariaceae) afforded five cyanidin glycosides, 3-O-sambubiosyl-5-O-glucosyl cyanidin (1), cyanidin 3-O-sambubioside (2), cyanidin 3-O-glucoside (3), cyanidin 3-O-(2(G)-xylosyl)-rutinoside (4) and cyanidin 3-O-rutinoside (5). They showed considerable free-radical-scavenging properties in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with the RC(50) values of 9.29 x 10(-6), 9.33 x 10(-6), 8.31 x 10(-6), 8.96 x 10(-6) and 9.55 x 10(-6) mol L(-1), respectively. The structures of these compounds were elucidated by various chemical hydrolyses and spectroscopic means. The total anthocyanin content was 1.9 g per 100 g dried fruits on cyanidin 3-glucoside basis.

Acta Pharm. 2010 Mar 1;60(1):1-11

Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice.

Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine expression is one of the most important targets for the prevention of obesity and improvement of insulin sensitivity. In this study, we have demonstrated that anthocyanin (cyanidin 3-glucoside; C3G) which is a pigment widespread in the plant kingdom, ameliorates hyperglycemia and insulin sensitivity due to the reduction of retinol binding protein 4 (RBP4) expression in type 2 diabetic mice. KK-A(y) mice were fed control or control +0.2% of a C3G diet for 5 weeks. Dietary C3G significantly reduced blood glucose concentration and enhanced insulin sensitivity. The adiponectin and its receptors expression were not responsible for this amelioration. C3G significantly upregulated the glucose transporter 4 (Glut4) and downregulated RBP4 in the white adipose tissue, which is accompanied by downregulation of the inflammatory adipocytokines (monocyte chemoattractant protein-1 and tumor necrosis factor-alpha) in the white adipose tissue of the C3G group. These findings indicate that C3G has significant potency in an anti-diabetic effect through the regulation of Glut4-RBP4 system and the related inflammatory adipocytokines.

Biochem Pharmacol. 2007 Dec 3;74(11):1619-27

Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans.

We determined red fruit anthocyanins, cyanidin-3-glucoside (Cy-g) and cyanidin-3,5-diglucoside (Cy-dg), incorporated into plasma and liver of rats and human plasma by UV-HPLC. Fifteen minutes after an oral supplementation of a mixture of 320 mg of Cy-g and 40 mg of Cy-dg/kg of body weight, rats showed an increase to a maximum of 1,563 microg (3,490 nmol) of Cy-g/L and 195 microg (320 nmol) of Cy-dg/L in plasma and 0.067 microg (0.15 nmol) of Cy-g/g and a trace of Cy-dg together with methylated metabolites such as peonidin-3-glucoside in liver. In human plasma, 30 min after intake (2.7 mg of Cy-g and 0.25 mg of Cy-dg/kg of body weight), an average of 11 microg (24 nmol) of Cy-g/L and a trace of Cy-dg were found. Cyanidin as aglycone of Cy-g and Cy-dg was not found in such plasma samples, neither were conjugated and methylated anthocyanins. The results indicated that anthocyanins are incorporated keeping structurally intact glycoside forms, from the digestive tract into the blood circulation system in mammals.

J Agric Food Chem. 1999 Mar;47(3):1083-91

Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine.

The potential of purple corn color (PCC), a natural anthocyanin, to modify colorectal carcinogenesis was investigated in male F344/DuCrj rats, initially treated with 1,2-dimethylhydrazine (DMH), receiving 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the diet. After DMH initiation, PCC was given at a dietary level of 5.0% in combination with 0.02% PhIP until week 36. No PCC-treatment-related changes in clinical signs, body weight and food consumption were found. Incidences and multiplicities of colorectal adenomas and carcinomas in rats initiated with DMH were clearly increased by PhIP. In contrast, lesion development was suppressed by PCC administration. Furthermore, in the non-DMH initiation groups, induction of aberrant crypt foci by PhIP tended to be decreased by the PCC supplementation. The results thus demonstrate that while PhIP clearly exerts promoting effects on DMH-induced colorectal carcinogenesis, these can be reduced by 5.0% PCC in the diet, under the present experimental conditions.

Cancer Lett. 2001 Sep 28;171(1):17-25

A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms.

The purpose of these studies was to investigate and compare the composition, stability, antioxidant and anticancer properties and mechanisms of anthocyanin-containing blackberry extracts (ACEs) from selected cultivars and using different extraction methods. ACEs were analyzed for total anthocyanin and phenolics content, polymeric color, and total antioxidant capacity (TAC). The influence of water content in the extraction system was evaluated. A 90-day stability study of the extract and a 48-h stability study of the extract in biologically relevant buffers were completed. The cytotoxic effects of ACEs on HT-29, MCF-7, and HL-60 cells were determined. H2O2 production in culture medium was measured and intracellular ROS levels were quantified. As compared to powder-derived ACEs, puree-derived ACEs contained similar amounts of anthocyanins, but greater levels of phenolics, increased TAC, significantly enhanced production of H2O2, and significantly enhanced cytotoxicity in all cell lines. Catalase could not protect cells from ACE-induced cell death. Cyanidin 3-glucoside exerted anticancer effect by acting synergistically or additively with other active components in the extracts. These data suggest that anthocyanins and non-anthocyanin phenolics in ACEs act synergistically or additively in producing anticancer effects. These studies also provide essential information for the development of fruit-derived ACEs as potential Botanical Drug Products.

Food Chem Toxicol. 2009 Apr;47(4):837-47

DNA stability and lipid peroxidation in vitamin E-deficient rats in vivo and colon cells in vitro—modulation by the dietary anthocyanin, cyanidin-3-glycoside.

BACKGROUND: Fruit and vegetable consumption protects against cancer. This is attributed in part to antioxidants such as vitamin E combating oxidative DNA damage. Anthocyanins are found in significant concentrations in the human diet. However, it remains to be established whether they are bioactive in vivo. AIM: To investigate the consequence both of vitamin E deficiency on oxidative damage to DNA and lipids and the cytoprotective effect of nutritionally relevant levels of cyanidin-3-glycoside both in vivo in rats and in vitro in human colonocytes.METHODS: Male Rowett Hooded Lister rats were fed a diet containing less than 0.5 mg/kg vitamin E or a vitamin E supplemented control diet containing 100 mg d alpha-tocopherol acetate/kg. Half of the controls and vitamin E-deficient rats received cyanidin-3-glycoside (100 mg/kg). After 12 weeks endogenous DNA stability in rat lymphocytes (strand breaks and oxidised bases) and response to oxidative stress ex vivo (H2O2; 200 microM) was measured by single cell gel electrophoresis (SCGE). Tissue levels of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-Oxo-dG) were measured by HPLC with EC detection. D alpha-tocopherol and lipid peroxidation products (thiobarbituric acid reactive substances; TBARS) were measured by HPLC. Rat plasma pyruvate kinase and the production of reactive oxygen by phagocytes were detected spectrophotometrically and by flow cytometry respectively. Immortalised human colon epithelial cells (HCEC) were preincubated in vitro with the anthocyanins cyanidin and cyanidin-3-glycoside and the flavonol quercetin (all 50 microM) before exposure to H2O2 (200 microM). DNA damage was measured by SCGE as above. RESULTS: Plasma and liver d alpha-tocopherol declined progressively over 12 weeks in rats made vitamin E deficient. Lipid peroxidation was increased significantly in plasma, liver and red cells. Reactive oxygen levels in phagocytes and plasma pyruvate kinase were increased. Vitamin E deficiency did not affect DNA stability in rat lymphocytes, liver or colon. Cyanidin-3-glycoside did not alter lipid peroxidation or DNA damage in rats. However, it was chemoprotective against DNA damage in human colonocytes.DNA strand breakage was decreased 38.8 +/- 2.2% after pretreatment with anthocyanin.

CONCLUSION: While it is accepted that vitamin E alters lipid oxidation in vivo, its role in maintaining DNA stability remains unclear. Moreover, whereas cyanidin-3-glycoside protects against oxidative DNA damage in vitro, at nutritionally relevant concentrations it is ineffective against oxidative stress in vivo.

Eur J Nutr. 2005 Jun;44(4):195-203

Purple corn color suppresses Ras protein level and inhibits 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in the rat.

Anthocyanins belong to the class of phenolic compounds collectively named flavonoids. Many anthocyanins are reported to have inhibitory effects on carcinogenesis. Purple corn color (PCC), an anthocyanin containing extract of purple corn seeds, is used as a food colorant. The major anthocyanin in PCC is cyanidin 3-O-beta-D-glucoside (C3-G). The present study was conducted to assess the influence of dietary PCC on 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in rats. PCC significantly inhibited DMBA-induced mammary carcinogenesis in human c-Ha-ras proto-oncogene transgenic (Hras128) rats and in their non-transgenic counterparts. PCC and C3-G also inhibited cell viability and induced apoptosis in mammary tumor cells derived from Hras128 rat mammary carcinomas. At the molecular level, PCC and C3-G treatment resulted in a preferential activation of caspase-3 and reduction of Ras protein levels in tumor cells. It is proposed that C3-G could act as a chemopreventive and possibly chemotherapeutic agent for cancers with mutations in ras. Secondly, the in vitro-in vivo system used in this study can be utilized for screening for cancer preventive compounds that act via Ras down-regulation.

Cancer Sci. 2008 Sep;99(9):1841-6