Your Trusted Brand for Over 35 Years

Life Extension Magazine

<< Back to February 2013

Glucose and Cancer, Reishi, Tocopherol, and Hawthorn

February 2013

Postprandial glucose regulation: new data and new implications.

BACKGROUND: Type 2 diabetes is characterized by a gradual decline in insulin secretion in response to nutrient loads; hence, it is primarily a disorder of postprandial glucose (PPG) regulation. However, physicians continue to rely on fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) to guide management. OBJECTIVES: The objectives of this article are to review current data on postprandial hyperglycemia and to assess whether, and how, management of type 2 diabetes should change to reflect new clinical findings. METHODS: Articles were selected from MEDLINE searches (key words: postprandial glucose, postprandial hyperglycemia, and cardiovascular disease) and from our personal reference files, with emphasis on the contribution of postprandial hyperglycemia to overall glycemic load or cardiovascular (CV) risk. RESULTS: About 33% of people diagnosed as having type 2 diabetes based on postprandial hyperglycemia have normal FPG. PPG contributes > or =70% to the total glycemic load in patients who are fairly well controlled (HbA1c <7.3%). Furthermore, there is a linear relationship between the risk of CV death and the 2-hour oral glucose tolerance test (OGTT). Increased mortality is evident at OGTT levels of approximately 90 mg/dL (5 mmol/L), which is well below current definitions of type 2 diabetes. Biphasic insulin aspart was shown to be more effective at reducing HbA1c below currently recommended levels than basal insulin glargine (66% vs 40%; P < 0.001), and it reduced endothelial dysfunction more effectively than regular insulin (P < 0.01). Repaglinide achieved regression of carotid atherosclerosis (intima-media thickness) in 52% of patients versus 18% for glyburide (P < 0.01) over 1 year, although levels of HbA1c and CV risk factors were similar for both treatment groups. Finally, acarbose reduced the relative risk of CV events by 49% over 3.3 years versus placebo in patients with impaired glucose tolerance (2.2% vs 4.7%; P = 0.03) and by 35% over > or =1 year in patients with type 2 diabetes (9.4% vs 6.1%; P = 0.006). CONCLUSIONS: All components of the glucose triad (ie, FPG, HbA1c, and PPG) should be considered in the management of type 2 diabetes. Therapy targeted at PPG has been shown to improve glucose control and to reduce the progression of atherosclerosis and CV events; therefore, physicians should consider monitoring and targeting PPG, as well as HbA1c and FPG, in patients with type 2 diabetes.

Clin Ther.2005;27 Suppl B:S42-56

Impaired glucose tolerance, but not impaired fasting glucose, underlies left ventricular diastolic dysfunction.

OBJECTIVE: Glucose intolerance is recognized as a predictor of congestive heart failure (CHF). However, the association of postprandial hyperglycemia or fasting hyperglycemia with CHF has not been clarified. We determined the impact of the total spectrum of glucose abnormalities on left ventricular (LV) geometry and diastolic function. RESEARCH DESIGN AND METHODS: Two hundred and eighty-seven Japanese subjects who visited the university hospital to be checked for glucose intolerance or known type 2 diabetes were consecutively recruited. Participants underwent an oral glucose tolerance test if they had no history of diabetes, and LV geometry and LV systolic and diastolic function were analyzed by Doppler echocardiography. RESULTS: The frequency of LV diastolic dysfunction in subjects with normal glucose tolerance, impaired fasting glucose (IFG), impaired glucose tolerance (IGT), newly detected diabetes, and known diabetes were 13, 22, 50, 51, and 61%, respectively (χ(2) = 54.2, P < 0.0001). IGT was a predictor for LV diastolic dysfunction after adjusting for age, sex, systolic blood pressure, and heart rate (odds ratio 3.43 [95% CI 1.09-11.2]), but IFG was not (0.49 [0.06-3.08]). IGT was a predictor after adjusting for established CHF risk factors but was no longer significant after adjusting for BMI and homeostasis model assessment of insulin resistance. CONCLUSIONS: In this hospital-based registry of subjects without CHF, the prevalence of LV diastolic dysfunction was higher in subjects with IGT but not in those with IFG. Results suggest that IGT, as well as newly detected and known diabetes, could be linked to an increased risk of cardiovascular events, partly through LV diastolic dysfunction.

Diabetes Care.2011 Mar;34(3):686-90

Oxidative stress, endothelial dysfunction, and atherosclerosis.

This review focuses on the role of oxidative processes in atherosclerosis and the cardiovascular diseases (CVD) that can arise as a result. Atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. Overproduction of reactive oxygen species (ROS) under pathophysiologic conditions forms an integral part of the development of CVD, and in particular atherosclerosis. Endothelial dysfunction, characterized by a loss of nitric oxide (NO) bioactivity, occurs early on in the development of atherosclerosis, and determines future vascular complications. Although the molecular mechanisms responsible for mitochondria-mediated disease processes are not clear, oxidative stress seems to play an important role. In general, ROS are essential to the functions of cells, but adequate levels of antioxidant defenses are required in order to avoid the harmful effects of excessive ROS production. In this review, we will provide a summary of the cellular metabolism of reactive oxygen species (ROS) and its role in pathophysiological processes such as atherosclerosis; and currently available antioxidants and possible reasons for their efficacy and inefficacy in ameliorating oxidative stress-mediated diseases.

Curr Pharm Des. 2009;15(26):2988-3002

New perspectives on vitamin E: gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine.

Vitamin E (alpha-tocopherol or alphaT) has long been recognized as a classic free radical scavenging antioxidant whose deficiency impairs mammalian fertility. In actuality, alpha-tocopherol is one member of a class of phytochemicals that are distinguished by varying methylation of a chroman head group. Early studies conducted between 1922 and 1950 indicated that alpha-tocopherol was specific among the tocopherols in allowing fertility of laboratory animals. The unique vitamin action of alphaT, combined with its prevalence in the human body and the similar efficiency of tocopherols as chain-breaking antioxidants, led biologists to almost completely discount the "minor" tocopherols as topics for basic and clinical research. Recent discoveries have forced a serious reconsideration of this conventional wisdom. New and unexpected biological activities have been reported for the desmethyl tocopherols, such as gamma-tocopherol, and for specific tocopherol metabolites, most notably the carboxyethyl-hydroxychroman (CEHC) products. The activities of these other tocopherols do not map directly to their chemical antioxidant behavior but rather reflect anti-inflammatory, antineoplastic, and natriuretic functions possibly mediated through specific binding interactions. Moreover, a nascent body of epidemiological data suggests that gamma-tocopherol is a better negative risk factor for certain types of cancer and myocardial infarction than is a alpha-tocopherol. The potential public health implications are immense, given the extreme popularity of alphaT supplementation which can unintentionally deplete the body of gamma-tocopherol. These findings may or may not signal a major paradigm shift in free radical biology and medicine. The data argue for thorough experimental and epidemiological reappraisal of desmethyl tocopherols, especially within the contexts of cardiovascular disease and cancer biology.

Free Radic Biol Med.2004 Jan 1;36(1):1-15

A combination of aspirin and gamma-tocopherol is superior to that of aspirin and alpha-tocopherol in anti-inflammatory action and attenuation of aspirin-induced adverse effects.

Nonsteroidal anti-inflammatory drugs such as aspirin are used for pain relief and chemoprevention against cancer, but frequently cause gastric mucosal injury. We examined whether combinations of aspirin and alpha-tocopherol (alphaT) or aspirin and gamma-tocopherol (gammaT), with alphaT and gammaT being the two major forms of vitamin E, are better anti-inflammatory agents than aspirin alone, and whether these combinations alleviate aspirin-associated side effects. In the carrageenan-induced air-pouch inflammation model in the rat, aspirin (150 mg/kg) or a combination of aspirin and gammaT (33 mg/kg) inhibited proinflammatory prostaglandin E(2) (PGE(2)) by 70% (P<.02) at the inflammation site 6 h after inflammation was initiated. However, at 18 h, only the combination decreased exudate volume (15%; P<.05) and showed modest inhibition of PGE(2) (40%; P<.07) and lactate dehydrogenase activity (30%; P=.07) in the fluid collected at the inflammation site. gammaT, but not alphaT, spared aspirin-induced reduction in food intake, partially reversed aspirin-depressed gastric PGE(2) and attenuated stomach lesions. Surprisingly, the combination of aspirin and alphaT (33 mg/kg) did not show more benefits than aspirin alone, but worsened gastric injury and food intake reduction. Our study demonstrated that a combination of aspirin and gammaT, but not a combination of aspirin and alphaT, has some advantage over aspirin alone in terms of anti-inflammatory effects and attenuation of aspirin-induced adverse effects. This combination may be useful in complementing aspirin in the treatment of chronic inflammatory conditions and cancer.

J Nutr Biochem. 2009 Nov;20(11):894-900

Comparative uptake of alpha- and gamma-tocopherol by human endothelial cells.

The intake of gamma-tocopherol by North Americans is generally higher than that of alpha-tocopherol. However, the levels of alpha-tocopherol in human blood have consistently been shown to be higher than those of gamma-tocopherol suggesting differential cellular retention of the two tocopherol forms. We sought to resolve this question by studying tocopherol metabolism by human endothelial cells in culture. The time- and dose-dependent uptake of gamma-tocopherol by endothelial cells was similar to that of alpha-tocopherol. To determine the comparative uptake between alpha- and gamma-tocopherol, we adopted two approaches in which cells were enriched with either increasing concentrations of an equimolar mixture of alpha- and gamma-tocopherol; or cells were enriched with a fixed concentration of tocopherols in which the alpha to gamma ratio was varied. Our results indicated that there was a preferential uptake of gamma-tocopherol by the cells. When cells were enriched with either alpha- or gamma-tocopherol and the disappearance of individual tocopherols was monitored over time, gamma-tocopherol exhibited a faster rate of disappearance. The faster turnover of gamma-tocopherol can explain the discrepancy between high intake and low retention of gamma-tocopherol in man.

Lipids.1992 Jan;27(1):38-41

Supplementation of a γ-tocopherol-rich mixture of tocopherols in healthy men protects against vascular endothelial dysfunction induced by postprandial hyperglycemia.

Postprandial hyperglycemia induces oxidative stress responses, impairs vascular endothelial function (VEF) and increases the risk of cardiovascular disease. We hypothesized that the antioxidant and anti-inflammatory activities of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) would protect against vascular dysfunction that is otherwise caused by postprandial hyperglycemia by decreasing oxidative stress and proinflammatory responses, and improving nitric oxide (NO•) homeostasis. In a randomized, crossover study, healthy men (n=15; 21.8±0.8 years) completed a fasting oral glucose challenge (75 g) with or without prior supplementation of γ-TmT (5 days). Brachial artery flow-mediated dilation (FMD), plasma glucose, insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine and asymmetric dimethylarginine (ADMA) were measured at regular intervals during a 3-h postprandial period. Supplementation of γ-TmT increased (P<.05) plasma γ-T by threefold and γ-carboxyethyl-hydroxychroman by more than ninefold without affecting α-T, glucose, arginine or ADMA. Baseline FMD, MDA, arginine and ADMA were unaffected by γ-TmT (P>.05). Postprandial FMD decreased 30%-44% (P<.05) following glucose ingestion, but was maintained with γ-TmT. Supplementation of γ-TmT also attenuated postprandial increases in MDA that occurred following glucose ingestion. Plasma arginine decreased (P<.05) in both trials to a similar extent regardless of γ-TmT supplementation. However, the ratio of ADMA/arginine increased time-dependently in both trials (P<.05), but to a lesser extent following γ-TmT supplementation (P<.05). Inflammatory proteins were unaffected by glucose ingestion or γ-TmT. Collectively, these findings support that short-term supplementation of γ-TmT maintains VEF during postprandial hyperglycemia possibly by attenuating lipid peroxidation and disruptions in NO• homeostasis, independent of inflammation.

J Nutr Biochem.2012 Jul 25

Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria.

BACKGROUND: New diagnostic criteria for diabetes based on fasting blood glucose (FBG) level were approved by the American Diabetes Association. The impact of using FBG only has not been evaluated thoroughly. The fasting and the 2-hour glucose (2h-BG) criteria were compared with regard to the prediction of mortality. METHODS: Existing baseline data on glucose level at fasting and 2 hours after a 75-g oral glucose tolerance test from 10 prospective European cohort studies including 15,388 men and 7,126 women aged 30 to 89 years, with a median follow-up of 8.8 years, were analyzed. Hazards ratios for death from all causes, cardiovascular disease, coronary heart disease, and stroke were estimated. RESULTS: Multivariate Cox regression analyses showed that the inclusion of FBG did not add significant information on the prediction of 2h-BG alone (P>.10 for various causes), whereas the addition of 2h-BG to FBG criteria significantly improved the prediction (P<.001 for all causes and P<.005 for cardiovascular disease). In a model including FBG and 2h-BG simultaneously, hazards ratios (95% confidence intervals) in subjects with diabetes on 2h-BG were 1.73 (1.45-2.06) for all causes, 1.40 (1.02-1.92) for cardiovascular disease, 1.56 (1.03-2.36) for coronary heart disease, and 1.29 (0.66-2.54) for stroke mortality, compared with the normal 2h-BG group. Compared with the normal FBG group, the corresponding hazards ratios in subjects with diabetes on FBG were 1.21 (1.01-1.44), 1.20 (0.88-1.64), 1.09 (0.71-1.67), and 1.64 (0.88-3.07), respectively. The largest number of excess deaths was observed in subjects who had impaired glucose tolerance but normal FBG levels. CONCLUSION: The 2h-BG is a better predictor of deaths from all causes and cardiovascular disease than is FBG.

Arch Intern Med.2001 Feb 12;161(3):397-405