Free Shipping on All Orders $75 Or More!

Your Trusted Brand for Over 35 Years

Life Extension Magazine

<< Back to October 2011

Novel Methods to Cure Drug Addiction

October 2011

By Mark Joslin

Dr. Sponaugle’s Approach to Diagnosis and Treatment

Dr. Sponaugle’s Approach to Diagnosis and Treatment

Dr. Sponaugle’s unique approach focuses on determining abnormal brain chemistry patterns and then rectifying them. In order to correctly assess biochemical and medical disorders that can distort brain chemistry and cause various addiction and anxiety issues, Sponaugle conducts a comprehensive analysis of more than 65 brain chemicals, hormones, enzymes, toxins, amino acids, infectious biomarkers, and vitamins through blood and urine testing.

This extensive evaluation allows Sponaugle to determine the root causes of each individual’s addictive behaviors. In many cases, the possibilities of exposure to mold and industrial toxins are also evaluated.

Dr. Sponaugle is critical of conventional addiction treatment programs, noting that most focus only on one or two aspects of drug addiction.

Instead, Sponaugle uses a combination of treatments he refers to as nutritional and rapid detox. Sponaugle’s nutritional detox provides intravenous amino acids, vitamins, and minerals to remedy biochemical imbalances safely.

Dr. Sponaugle drew on his extensive anesthesia and intensive care training to develop his rapid detox protocol. In this phase, he administers intravenous (IV) sedation and other medications that help blunt or block symptoms of physical withdrawal. These symptoms are typically related to elevated levels of “fight or flight” hormones like adrenaline that produce anxiety, agitation, palpitations, and jitteriness. Those unpleasant feelings, left uncorrected, make the detox experience so uncomfortable that many addicts prefer the addiction itself.

Dr. Sponaugle customizes his protocol to each patient, which helps him avoid any of the effects of the withdrawal-related adrenaline surge. His continued assessment and balancing of hormone and neurotransmitter levels over the longer term enables his patients’ recovery process to be more effective.

A Look at Dr. Sponaugle’s Casebook

Two cases from Dr. Sponaugle’s clinical experience serve to illustrate his approach.


Jennifer was a 54-year-old nurse who began drinking large amounts of wine at age 50 (she had previously been a light social drinker only). On arrival at Dr. Sponaugle’s clinic, she had just returned from a 28-day, $46,000 stay at a treatment center in Arizona, relapsing just four days after returning home.

Jennifer’s brain scan revealed both areas of low dopamine activity (dopamine holes in her prefrontal cortex) and an overactive deep limbic region linked with serotonin and taurine deficiency. Her brain scan revealed generalized overactivity, likely due to elevated histamine from her leaky gut syndrome. Her urinary neurotransmitter testing revealed low serotonin and taurine levels, and a markedly elevated histamine level, vividly demonstrating brain chemical imbalances associated with excessive wine consumption.

Complicating her alcohol-related serotonin deficiency was Jennifer’s menopausal low estradiol levels, making her brain resistant to what serotonin she did produce. The Arizona treatment center had started her on serotonin-boosting SSRI (selective serotonin reuptake inhibitor) medication [Lexapro®], but it had no effect on her menopausal serotonin-resistant receptors.

The net result, says Dr. Sponaugle, was an overactive limbic system creating a steady beat of depression and anxiety. It is hardly surprising that without further treatment, Jennifer quickly resorted to self-medication with her drug of choice: alcohol.

Jennifer was started on high-quality supplements including 5-hydroxytryptophan (5-HTP), allowing her brain to begin making more serotonin. She was also given appropriate estradiol replacement to restore her serotonin receptors to their normal sensitivity. She used a gut-detoxifying formula, probiotics, and a combination of L-glutamine, gamma-oryzanol, and soothing herbs to help heal her intestine.

Jennifer has been alcohol-free for more than 15 months and experiences absolutely no craving for alcohol. Jennifer describes her own progress as “amazing.”

Editor’s note: Individuals taking selective serotonin reuptake inhibitor drugs such as Lexapro® should not take 5-HTP.


Susan was a 21-year-old woman who came to Dr. Sponaugle’s clinic with her mother. Susan had been drinking two liters of vodka while consuming 1,000 mg of OxyContin® (a narcotic) and 20 mg of Xanax® (an anti-anxiety drug) daily. Susan’s problems had begun at age 12, since which time she had attended eight drug rehab programs at a cost of $240,000.

Susan had begun by raiding her parents’ liquor cabinet to “calm her anxious brain.” Dr. Sponaugle learned that Susan had not experienced anxiety issues prior to age 12, which was also, significantly, the age when she began having her periods, which were always longer and heavier than those of her peers.

Sponaugle recognized in Susan the classic presentation of progesterone deficiency. Her ovaries were producing normal levels of estrogen unopposed by progesterone, a situation known to result in enhanced anxiety.35,36 Her relatively high estrogen levels also boosted dopamine production, further adding to overactivity in Susan’s anxiety-producing brain regions.37

Like Jennifer, then, Susan began by drinking the most readily-available calming drug she could find: alcohol. Her alcohol consumption contributed to the kind of toxic yeast overgrowth in the gastrointestinal tract that Dr. Sponaugle has found is associated with deficiencies of serotonin and taurine (two calming brain chemicals) in alcoholic patients. Her ensuing leaky gut contributed to elevated brain histamine activity.

Quite naturally, then, Susan turned to stronger drugs that could calm the mounting anxiety levels triggered by excess histamine activity. She discovered the soothing nature of narcotics and the calming influence of the benzodiazepines (such as Xanax®).

Sponaugle began by optimizing Susan’s hormonal levels (the original problem) and balancing her brain chemistry. He aggressively detoxified her gut with natural supplements designed to kill the yeast Candida albicans and other unwanted organisms. And he restored levels of nutrients and minerals that had been deficient.

Susan is now more than three years post-treatment without a single relapse. Says Sponaugle, “She is well on her way to enjoying a wonderful future.”


Dr. Sponaugle’s Approach to Diagnosis and Treatment

While millions of Americans suffer from chemical addictions, conventional detox and treatment programs have dismal success, with relapse rates ranging from 50-90%. Few such programs take into account the complicated inherited and acquired abnormalities in brain chemistry associated with addictions, focusing instead on frustrating “talk therapy” or medical detoxification strategies. Marvin “Rick” Sponaugle, MD, is a board certified anesthesiologist and addiction specialist who incorporates state-of-the art brain science and comprehensive biochemical testing to understand each addict’s unique pattern of brain chemistry. He uses this information to determine precisely how and why each person is self-medicating with their drug(s) of choice to achieve what for them is often the only semblance of “normalcy” they can experience. Armed with this information and an understanding of integrative health, Sponaugle first detoxifies his patients while administering deficient amino acid brain chemical precursors, vitamins, and minerals, along with medications to neutralize their uncomfortable adrenaline surges. He then administers a comprehensive program of biochemical and hormonal balancing to remove the driving forces behind the addiction. Sponaugle’s results speak for themselves: his patients’ relapse rate is just 9%. Patients and family members can find more information at:

For more information visit or call 1-888-775-2770.

If you have any questions on the scientific content of this article, please call a Life Extension® Health Advisor at

Neurological Conditions
Structures of healthy nerve and nerve
Structures of healthy nerve and nerve damaged by MS.

Dr. Sponaugle reports exceptionally successful results with his biochemically-based addiction treatment programs. He has now applied the same principles of detoxification and chemical balancing to other apparently intractable conditions. Among these, the most intriguing are his management of neurological illnesses such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS, also called Lou Gehrig’s Disease), attention deficit/hyperactivity disorder (ADHD), and even Alzheimer’s disease (AD).

Says Sponaugle, “US physicians lag far behind their European counterparts in recognizing the role played by biotoxins, especially those from indoor molds and solvent toxins such as benzene and toluene, in the causation of MS, AD, and other neurological conditions.” Sponaugle notes that basic science studies have long demonstrated a relationship between mold toxins and MS.38 In MS, brain cells lose their vital insulating sheath of the fat-and-protein material called myelin, leading to the debilitating symptoms of the disease. It is now well documented that fungi, including molds, release toxins that activate immune system cells and trigger them to destroy brain cells.38,39 Nonetheless, says Sponaugle, American physicians continue to tell their patients that the cause of MS is unknown.

There is increasing evidence that fungal toxins play a causative role in other neurological conditions as well, including Alzheimer’s disease. In this condition, fungal toxins have been identified in actual brain or nerve tissue from sufferers of the disorders.40 Tissue from these patients and those with other neurological disorders also contains high levels of an enzyme that targets the fungal protein called chitin, which is not otherwise found in the human body.41

Molds and their toxins are distressingly prevalent in our food supply. One study demonstrated that nearly 20% of corn samples from the midwest contained one of the four most dangerous fungal toxins.42 Sponaugle says that one in four Americans, 24%, have a particular genetic factor that interferes with the effective removal of mold and industrial toxins. He sees this genetic factor in 80% of his non-addicted “wellness” patients who suffer common maladies such as chronic fatigue syndrome, fibromyalgia, and even poorly-defined malaise, in addition to neurological conditions such as depression, anxiety, rage, and bipolar symptoms.

Dr. Sponaugle has turned his observations into solid clinical practice. He has designed an aggressive intravenous treatment model for toxin removal that is highly successful at diminishing symptoms of his patients suffering from MS as well as other debilitating brain disorders such as ALS, Parkinson’s disease, Alzheimer’s disease, and autism.

Non-Addictive Conditions Also Respond to Sponaugle’s Treatment Approach

Among the many targeted programs Dr. Sponaugle offers, several are aimed at treating non-addictive conditions. These conditions share certain characteristics with the addictive disorders, such as producing imbalances in brain chemistry, and often have a toxin exposure as a cause. Sponaugle has successfully treated patients with:

  • Hypoglycemia
  • Food allergies
  • Nutrient depletion
  • Anxiety/insomnia
  • ADD/ADHD (including many high-performing adult professionals)
  • Depression
  • Multiple sclerosis
  • Alzheimer’s disease
  • Hormonal imbalance

Sponaugle’s Brain and Body Wellness Program targets those with suspected toxins (especially indoor mold and industrial solvent toxicity) that may be at the root of their disorders. His comprehensive testing and proprietary intravenous treatment model have been highly successful in managing these conditions.


1. Available at: Accessed April 29, 2011.

2. Available at: Accessed April 29, 2011.

3. Xu J, Kochanek KD, Murphy SL, Tejada-Vera B. Deaths: Final Data for 2007. National Vital Statistics Reports 58/9. Centers for Disease Control and Prevention. National Center for Health Statistics. 2010 May.

4. Available at: Accessed April 29, 2011.

5. Available at: Accessed April 28, 2011.

6. Available at: Accessed April 28, 2011.

7. Sponaugle MR. Brain Chemistry and Addiction. 2011.

8. Office of Applied Studies. Drug Abuse at Highest Level in Nearly a Decade. Rockville, MD: Department of Health and Human Services; December 2010.

9. Available at: Accessed April 28, 2011.

10. Available at: Accessed April 28, 2011.

11. Available at: Accessed April 28, 2011.

12. Available at: Accessed April 28, 2011.

13. Cosgrove KP. Imaging receptor changes in human drug abusers. Curr Top Behav Neurosci. 2010;3:199-217.

14. Martinez D, Narendran R. Imaging neurotransmitter release by drugs of abuse. Curr Top Behav Neurosci. 2010;3:219-45.

15. Weinstein AM. Computer and video game addiction-a comparison between game users and non-game users. Am J Drug Alcohol Abuse. 2010 Sep;36(5):268-76.

16. Blum K, Chen AL, Chen TJ, et al. Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): a commentary. Theor Biol Med Model. 2008 Nov 12;5:24.

17. George O, Koob GF. Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neurosci Biobehav Rev. 2010 Nov;35(2):232-47.

18. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010 Jan;35(1):217-38.

19. Ross S, Peselow E. The neurobiology of addictive disorders. Clin Neuropharmacol. 2009 Sep-Oct;32(5):269-76.

20. Spooren W, Lesage A, Lavreysen H, Gasparini F, Steckler T. Metabotropic glutamate receptors: their therapeutic potential in anxiety. Curr Top Behav Neurosci. 2010;2:391-413.

21. Freitas-Ferrari MC, Hallak JE, Trzesniak C, et al. Neuroimaging in social anxiety disorder: a systematic review of the literature. Prog Neuropsychopharmacol Biol Psychiatry. 2010 May 30;34(4):565-80.

22. Koh KB, Kang JI, Lee JD, Lee YJ. Shared neural activity in panic disorder and undifferentiated somatoform disorder compared with healthy controls. J Clin Psychiatry. 2010 Dec;71(12):1576-81.

23. Nikolaus S, Antke C, Beu M, Muller HW. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders—results from in vivo imaging studies. Rev Neurosci. 2010;21(2):119-39.

24. Bonini JS, Da Silva WC, Da Silveira CK, Kohler CA, Izquierdo I, Cammarota M. Histamine facilitates consolidation of fear extinction. Int J Neuropsychopharmacol. 2011 Jan 7:1-9.

25. Dere E, Zlomuzica A, De Souza Silva MA, Ruocco LA, Sadile AG, Huston JP. Neuronal histamine and the interplay of memory, reinforcement and emotions. Behav Brain Res. 2010 Dec 31;215(2):209-20.

26. Zarrindast MR, Nasehi M, Khansari M, Bananej M. Influence of nitric oxide agents in the rat amygdala on anxiogenic-like effect induced by histamine. Neurosci Lett. 2011 Feb 1;489(1):38-42.

27. Katsui R, Kuniyasu H, Matsuyoshi H, Fujii H, Nakajima Y, Takaki M. The plasticity of the defecation reflex pathway in the enteric nervous system of guinea pigs. J Smooth Muscle Res. 2009 Feb;45(1):1-13.

28. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett. 2008 Jun;29(3):287-91.

29. Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009 Mar;24(1):27-53.

30. Mendoza C, Matheus N, Iceta R, Mesonero JE, Alcalde AI. Lipopolysaccharide induces alteration of serotonin transporter in human intestinal epithelial cells. Innate Immun. 2009 Aug;15(4):243-50.

31. Durant C, Christmas D, Nutt D. The pharmacology of anxiety. Curr Top Behav Neurosci. 2010;2:303-30.

32. Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol. 2008 Jan 1;75(1):266-322.

33. Schule C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience. 2011 Mar 23.

34. Kugaya A, Epperson CN, Zoghbi S, et al. Increase in prefrontal cortex serotonin 2A receptors following estrogen treatment in postmenopausal women. Am J Psychiatry. 2003 Aug;160(8):1522-4.

35. Frye CA, Sumida K, Dudek BC, et al. Progesterone’s effects to reduce anxiety behavior of aged mice do not require actions via intracellular progestin receptors. Psychopharmacology (Berl). 2006 Jun;186(3):312-22.

36. Reddy DS, O’Malley BW, Rogawski MA. Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology. 2005 Jan;48(1):14-24.

37. Morissette M, Levesque D, Di Paolo T. Effect of chronic estradiol treatment on brain dopamine receptor reappearance after irreversible blockade: an autoradiographic study. Mol Pharmacol. 1992 Sep;42(3):480-8.

38. Purzycki CB, Shain DH. Fungal toxins and multiple sclerosis: a compelling connection. Brain Res Bull. 2010 Apr 29;82(1-2):4-6.

39. Hiestand PC, Rausch M, Meier DP, Foster CA. Ascomycete derivative to MS therapeutic: S1P receptor modulator FTY720. Prog Drug Res. 2008;66:361, 363-81.

40. Sotgiu S, Musumeci S, Marconi S, Gini B, Bonetti B. Different content of chitin-like polysaccharides in multiple sclerosis and Alzheimer’s disease brains. J Neuroimmunol. 2008 Jun 15;197(1):70-3.

41. Barone R, Sotgiu S, Musumeci S. Plasma chitotriosidase in health and pathology. Clin Lab. 2007;53(5-6):321-33.

42. Russell L, Cox DF, Larsen G, Bodwell K, Nelson CE. Incidence of molds and mycotoxins in commercial animal feed mills in seven midwestern states, 1988-1989. J Anim Sci. 1991 Jan;69(1):5-12.