Free Shipping on All Orders $75 Or More!

Your Trusted Brand for Over 35 Years

Life Extension Magazine

<< Back to February 2011


February 2011

Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain.

A major theory of aging is that oxidative damage may accumulate in DNA and contribute to physiological changes associated with aging. We examined age-related accumulation of oxidative damage to both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in human brain tissue. We measured the oxidized nucleoside, 8-hydroxy-2’-deoxyguanosine (OH8dG), in DNA isolated from 3 regions of cerebral cortex and cerebellum from 10 normal humans aged 42 to 97 years. The amount of OH8dG, expressed as a ratio of the amount of deoxyguanosine (dG) or as fmol/micrograms of DNA, increased progressively with normal aging in both nDNA and mtDNA; however, the rate of increase with age was much greater in mtDNA. There was a significant 10-fold increase in the amount of OH8dG in mtDNA as compared with nDNA in the entire group of samples, and a 15-fold significant increase in patients older than 70 years. These results show for the first time that there is a progressive age-related accumulation in oxidative damage to DNA in human brain, and that the mtDNA is preferentially affected. It is possible that such damage may contribute to age-dependent increases in incidence of neurodegenerative diseases.

Ann Neurol. 1993 Oct;34(4):609-16

Mitochondria in the diabetic heart.

Diabetes mellitus increases the risk of developing cardiovascular diseases such as coronary artery disease and heart failure. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the cause of this increased heart failure risk is multifactorial, increasing evidence suggests that derangements in cardiac energy metabolism play an important role. In particular, abnormalities in cardiomyocyte mitochondrial energetics appear to contribute substantially to the development of cardiac dysfunction in diabetes. This review will summarize these abnormalities in mitochondrial function and discuss potential underlying mechanisms.

Cardiovasc Res. 2010 Nov 1;88(2):229-40

Mitochondrial dysfunction in cardiac disease: ischemia—reperfusion, aging, and heart failure.

Mitochondria contribute to cardiac dysfunction and myocyte injury via a loss of metabolic capacity and by the production and release of toxic products. This article discusses aspects of mitochondrial structure and metabolism that are pertinent to the role of mitochondria in cardiac disease. Generalized mechanisms of mitochondrial-derived myocyte injury are also discussed, as are the strengths and weaknesses of experimental models used to study the contribution of mitochondria to cardiac injury. Finally, the involvement of mitochondria in the pathogenesis of specific cardiac disease states (ischemia, reperfusion, aging, ischemic preconditioning, and cardiomyopathy) is addressed.

J Mol Cell Cardiol. 2001 Jun;33(6):1065-89

Effect of lifelong coenzyme Q10 supplementation on age-related oxidative stress and mitochondrial function in liver and skeletal muscle of rats fed on a polyunsaturated fatty acid (PUFA)-rich diet.

This study investigates aging-related changes in lipid peroxidation and functionality in liver and skeletal-muscle mitochondria in rats fed a diet rich in polyunsaturated fatty acids (PUFA), depending on supplementation or not with coenzyme Q(10) (CoQ(10)). Two groups of rats were fed for 24 months on a PUFA-rich diet, differing in supplementation or not with CoQ(10). At 6 and 24 months mitochondria were analyzed for fatty acid profile; hydroperoxides; alpha-tocopherol; CoQ(9;) CoQ(10;) cytochromes b, c+c(1), and a+a(3) contents; cytochrome c oxidase activity; and catalase activity in cytosol. Results of this study showed for the supplemented group an age-associated decrease in the peroxidizability index, an increase in catalase activity in skeletal muscle, and modulation of the aging-related changes in different mitochondrial electron-transport-chain components in skeletal muscle. These findings provide mechanisms to explain the effect of CoQ(10) in extending the life span of animals fed a PUFA-rich diet.

J Gerontol A Biol Sci Med Sci. 2007 Nov;62(11):1211-8

Does the intestinal microflora synthesize pyrroloquinoline quinone?

Pyrroloquinoline quinone (PQQ) functions as a cofactor for prokaryotic oxidoreductases, such as methanol dehydrogenase and glucose dehydrogenase. When chemically-defined diets without PQQ are fed to animals, lathyritic changes are observed. In previous studies, it was assumed that PQQ was produced by the intestinal microflora; consequently, antibiotics were routinely added to diets. In the present study this assumption is tested further in mice by: (i) examining the effects of dietary antibiotics on fecal PQQ excretion, (ii) isolating the intestinal flora to identify bacteria known to synthesize PQQ and (iii) determining in vitro if the intestinal microflora synthesizes PQQ from radio-chemically labeled precursors. The results of these experiments indicate that little if any PQQ is synthesized by the intestinal microflora. Rather, when PQQ is present in the intestine, the diet is a more obvious source.

Biofactors. 1991 Jan;3(1):53-9

The essential nutrient pyrroloquinoline quinone may act as a neuroprotectant by suppressing peroxynitrite formation.

Pyrroloquinoline quinone (PQQ) is a redox active essential nutrient that can generate or scavenge superoxide depending on its microenvironment. PQQ has been shown previously to be neuroprotective in a rodent stroke model. Here we test whether PQQ interacts with reactive nitrogen species, known to be involved in the pathogenesis of stroke. Using rat forebrain neurons in culture, we determined that the toxicity of SIN-1 was mediated by peroxynitrite and that PQQ could block this toxic action. However, PQQ could not block the toxicity of peroxynitrite itself. Both SIN-1 and peroxynitrite caused ATP depletion, but only SIN-1 evoked ATP depletion was blocked by PQQ. In a cell-free system, PQQ blocked nitration of bovine serum albumin produced by SIN-1, but potentiated peroxynitrite-induced nitration. PQQ was unable to block ATP depletion and cell death induced by NO. donors (DEA/NO, DPT/NO and DETA/NO), indicating that it does not directly interact with nitric oxide, and suggesting that it acts as a superoxide scavenger. PQQ significantly potentiated cGMP accumulation evoked by SIN-1, similar to the effect of superoxide dismutase (SOD). However, unlike SOD, which potentiated neurotoxicity induced by SIN-1, PQQ blocked its toxicity, arguing against the possibility that PQQ functions simply as a SOD mimetic. Indeed, substantially less H2O2 was produced by the incubation of SIN-1 with PQQ, when compared to SOD. These results suggest that PQQ scavenges superoxide without forming toxic levels of H2O2. Therefore, the protective effect of PQQ on stroke might be due, at least in part, to the suppression of peroxynitrite formation.

Eur J Neurosci. 2002 Sep;16(6):1015-24

Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16.

Pseudomonas fluorescens B16 is a plant growth-promoting rhizobacterium. To determine the factors involved in plant growth promotion by this organism, we mutagenized wild-type strain B16 using OmegaKm elements and isolated one mutant, K818, which is defective in plant growth promotion, in a rockwool culture system. A cosmid clone, pOK40, which complements the mutant K818, was isolated from a genomic library of the parent strain. Tn3-gusA mutagenesis of pOK40 revealed that the genes responsible for plant growth promotion reside in a 13.3-kb BamHI fragment. Analysis of the DNA sequence of the fragment identified 11 putative open reading frames, consisting of seven known and four previously unidentified pyrroloquinoline quinone (PQQ) biosynthetic genes. All of the pqq genes showed expression only in nutrient-limiting conditions in a PqqH-dependent manner. Electrospray ionization-mass spectrometry analysis of culture filtrates confirmed that wild-type B16 produces PQQ, whereas mutants defective in plant growth promotion do not. Application of wild-type B16 on tomato (Solanum lycopersicum) plants cultivated in a hydroponic culture system significantly increased the height, flower number, fruit number, and total fruit weight, whereas none of the strains that did not produce PQQ promoted tomato growth. Furthermore, 5 to 1,000 nm of synthetic PQQ conferred a significant increase in the fresh weight of cucumber (Cucumis sativus) seedlings, confirming that PQQ is a plant growth promotion factor. Treatment of cucumber leaf discs with PQQ and wild-type B16 resulted in the scavenging of reactive oxygen species and hydrogen peroxide, suggesting that PQQ acts as an antioxidant in plants.

Plant Physiol. 2008 Feb;146(2):657-68

Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice.

When pyrroloquinoline quinone (PQQ) is added to an amino acid-based, but otherwise nutritionally complete basal diet, it improves growth-related variables in young mice. We examined PQQ and mitochondrial function based on observations that PQQ deficiency results in elevated plasma glucose concentrations in young mice, and PQQ addition stimulates mitochondrial complex 1 activity in vitro. PQQ-deficient weanling mice had a 20-30% reduction in the relative amount of mitochondria in liver; lower respiratory control ratios, and lower respiratory quotients than PQQ-supplemented mice (2 mg PQQ/kg diet). In mice from dams fed a conventional laboratory diet, but switched at weaning to the basal diet, plasma glucose, Ala, Gly, and Ser concentrations were elevated at 4 wk (PQQ- vs. PQQ+), but not at 8 wk. The relative mitochondrial content (ratio of mtDNA to nuclear DNA) also tended (P<0.18) to be lower (PQQ- vs. PQQ+) at 4 wk, but not at 8 wk. PQQ also counters the mitochondrial complex 1 inhibitor, diphenylene iodonium (DPI). Mice were gavaged with 0, 0.4, or 4 microg PQQ/g body weight (BW) daily for 14 d. At each PQQ level, DPI was injected (i.p.) at 0, 0.4, 0.8, or 1.6 microg DPI/g BW. The PQQ-deficient mice exposed to 0.4 or 4.0 microg DPI/g lost weight and had lower plasma glucose levels than PQQ-supplemented mice (P<0.05). In addition, fibroblasts took up (3)H-PQQ added to cell cultures, and cultured hepatocytes maintained mitochondrial PQQ concentrations similar to those observed in vivo. Collectively, these results indicate that dietary PQQ can influence mitochondrial amount and function, particularly in perinatal and weanling mice.

J Nutr. 2006 Feb;136(2):390-6

Pyrroloquinoline quinone improves growth and reproductive performance in mice fed chemically defined diets.

Growth, reproductive performance, and indices of collagen maturation and expression were investigated in Balb/c mice fed chemically defined, amino acid-based diets with or without the addition 6 micro Mpyrroloquinoline quinone (PQQ)/kg diet. The diets were fed to virgin mice for 8 weeks before breeding. At weaning, the pups from successful pregnancies were fed the same diet as their respective dams. Reproductive performance was compromised in mice fed diets devoid of PQQ, and their offspring grew at slower rates than offspring from mice fed diets supplemented with PQQ. Successful mating (confirmed vaginal plugs) was not affected by the presence or absence of PQQ; however, pup viability (number of pups at parturition/number of pups at Day 4 of lactation) was decreased in PQQ-deprived mice. Conception (percentage of females giving live births) and fertility (percentage of births) were also decreased in PQQ-deprived mice. The slower rates of growth in offspring from PQQ-deprived mice were associated with decreased steady-state mRNA levels for Type I procollagen alpha(1)-chains in skin and lungs from neonatal mice. Values for lysyl oxidase accumulation as protein in PQQ-deficient mice also tended to be lower than corresponding values from PQQ-supplemented or -replete mice. Skin collagen solubility was increased in PQQ-deprived mice. These results indicate that PQQ supplementation can improve reproductive performance, growth, and may modulate indices of neonatal extracellular matrix production and maturation in mice fed chemically defined, but otherwise nutritionally complete diets.

Exp Biol Med (Maywood). 2003 Feb;228(2):160-6

Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat.

Pyrroloquinoline quinone (PQQ) added to purified diets devoid of PQQ improves indices of perinatal development in rats and mice. Herein, PQQ nutritional status and lysine metabolism are described, prompted by a report that PQQ functions as a vitamin-like enzymatic cofactor important in lysine metabolism (Nature 422 [2003] 832). Alternatively, we propose that PQQ influences lysine metabolism, but by mechanisms that more likely involve changes in mitochondrial content. PQQ deprivation in both rats and mice resulted in a decrease in mitochondrial content. In rats, alpha-aminoadipic acid (alphaAA), which is derived from alpha-aminoadipic semialdehyde (alphaAAS) and made from lysine in mitochondria, and the plasma levels of amino acids known to be oxidized in mitochondria (e.g., Thr, Ser, and Gly) were correlated with changes in the liver mitochondrial content of PQQ-deprived rats, but not PQQ-supplemented rats. In contrast, the levels of NAD dependent alpha-aminoadipate-delta-semialdehyde dehydrogenase (AASDH), a cytosolic enzyme important to alphaAA production from alphaAAS, was not influenced by PQQ dietary status. Moreover, the levels of U26 mRNA were not significantly changed even when diets differed markedly in PQQ and dietary lysine content. U26 mRNA levels were measured, because of U26’s proposed, albeit questionable role as a PQQ-dependent enzyme involved in alphaAA formation.

Biochim Biophys Acta. 2006 Nov;1760(11):1741-8