Free Shipping on All Orders $75 Or More!

Your Trusted Brand for Over 35 Years

Health Protocols

Prostate Cancer Treatment

Conventional Treatment

When diagnostic and staging information are available, the patient and his medical team can begin to consider treatment options (NCCN 2017b; Gillessen 2017; Small 2015) (see Table 1). For some men with early-stage disease or tumors with a low Gleason score, an approach called active surveillance can be considered. In active surveillance, no treatment is administered and the prostate cancer is monitored carefully (Wilt 2017; Garisto 2017). If treatment is deemed necessary, surgery and various forms of radiation are common initial options (NCCN 2016b; NCCN 2017b; Small 2015). Those with more advanced disease or disease that has recurred after initial treatment may want to consider options such as chemotherapy, hormonal therapy, or immunotherapy (NCCN 2016b; Small 2015; NCCN 2017a).

Table 1: Initial Treatment Options Based on Disease Stage and Risk

Type of Prostate Cancer

Characteristics

Treatment Options

Low-risk disease

Small tumors confined to prostate
Gleason score ≤ 6
Gleason grade group 1
PSA < 10 ng/mL

  • Active surveillance
  • Radical prostatectomy
  • Radiation (EBRT or brachytherapy)

Intermediate-risk disease

Larger tumors confined to prostate
Gleason score = 7
Gleason grade group 2–3
PSA = 10–20 ng/mL

  • Active surveillance
  • Radical prostatectomy
  • EBRT, sometimes with hormone therapy
  • Brachytherapy

High-risk disease

Tumors that have grown beyond the prostate to local structures
Gleason score ≥ 8
Gleason grade group 4–5
PSA > 20 ng/mL

  • Radical prostatectomy, sometimes with hormone therapy
  • EBRT, typically with hormone therapy
  • EBRT plus brachytherapy, typically with hormone therapy

Progressive disease after initial therapy

Disease progression detected by PSA, digital rectal examination, or imaging

  • Radical prostatectomy for those previously treated with radiation
  • EBRT for those previously treated surgically
  • Brachytherapy
  • Hormone therapy
  • Cryotherapy
  • High-intensity focused ultrasound

Metastatic disease

Tumors that have grown beyond the prostate to the bladder, rectum, lymph nodes, or distant organs

  • Hormone therapy
  • Sipuleucel-T (Provenge)
  • Chemotherapy
  • Radiation therapy to metastases
  • Treatments for pain and other symptoms

 EBRT=External beam radiation therapy; PSA=Prostate specific antigen
(Small 2015; NCCN 2017b)

Active Surveillance

Treatments such as surgery and radiation are invasive, with potential side effects and complications (Wilt 2017; Lee 2015). Men with low-risk prostate cancer have a good chance of living full lives without being affected by the disease, even without active treatment (Wilt 2017; Hamdy 2016). Unnecessary treatment for men with low-risk disease is often referred to as overtreatment (Loeb, Bjurlin 2014; Daskivich 2011).

Active surveillance is a regimen of regular monitoring with PSA, digital rectal examination, and repeat biopsies (Garisto 2017; NCCN 2017b). With regular testing, the patient’s risk status can be monitored. If anything suspicious is detected, additional tests or an active treatment approach can be considered.

One recent study followed 731 men with prostate cancer who were randomly assigned to either active surveillance or surgery. After almost 20 years, there were no significant differences in rates of prostate cancer-related deaths or deaths from any cause in the two groups. Surgery was associated with more adverse events than surveillance, while surveillance was associated with increased likelihood of treatment for disease progression (Wilt 2017).

Another recent trial compared active surveillance, surgery, and radiation therapy in 1,643 men with low-risk prostate cancer. After an average of 10 years of follow-up, there were very few prostate cancer-related deaths in all three groups. Metastases were more common, but still rare (about 6%), in the active surveillance group compared to the other two groups (Hamdy 2016).

Patients under active surveillance may benefit from implementing dietary and lifestyle practices associated with prostate health. For example, both healthy diet and exercise can reduce the risk of disease progression during active surveillance (Galvao 2016). Supplements such as omega-3 fatty acids and vitamin D may also be helpful (Marshall 2012; Moreel 2014). In addition, new molecular tests such as Oncotype Dx and Promark may help patients and their medical teams feel more confident in the selection of active surveillance (Albala 2016; Ross 2016). (See the Novel and Emerging Strategies section of this protocol).

Deciding Among Treatment Options in Newly Diagnosed Prostate Cancer

When men are first diagnosed with prostate cancer, they, along with their medical team, face the task of deciding which initial treatment approach is right for them. The patient’s risk group plays a major role in this decision (Small 2015; NCCN 2017b). 

But what about men for whom two or more options are equally appropriate? Some studies indicate that a patient’s treatment preferences may be overshadowed by their doctor’s recommendations (Scherr 2017). This suggests the value of talking with more than one type of prostate cancer specialist during the decision-making process. Radiation oncologists, who do not perform surgery, and urologists, who are surgeons, may present treatment options differently (Kim 2014; Jang 2010).

Patients can develop realistic expectations by asking questions when they meet with their medical team. Lack of complete information frequently leads men to underestimate their life expectancy with active surveillance and overestimate the gain in life expectancy with surgery or radiation (Xu 2016). Patients who discuss the risks and benefits of all treatment options with their medical team tend to be more satisfied with their ultimate decision (Davison 2003; Holmes 2017).

Online resources and advocacy groups can also help men stay involved and informed. Some decision aids have been specifically designed to support men through this process (Gorawara-Bhat 2017; Christie 2015), and men who use these tools are better able to ask critical questions about the treatments recommended by their medical team (Holmes-Rovner 2017; Jones, Hollen 2016).

Radical Prostatectomy

One common treatment option for prostate cancer is a type of surgery called radical prostatectomy (NCCN 2016b). Radical prostatectomy is mainly used when cancer is believed to be confined to the prostate gland (NCCN 2017b). According to the CDC, about 138,000 radical prostatectomies were performed in the United States in 2010 (CDC 2010).

During the procedure, the prostate gland is removed along with the seminal vesicles and sometimes other affected tissues in the region (NCCN 2016b; NCI 2018b). In the most common form of prostatectomy, called retropubic prostatectomy, lymph nodes can be removed if necessary, and nerves required for erection can be spared if they are not affected by the cancer (NCI 2018b; NCCN 2016b; Tosoian 2012; Masterson 2006; Goyal 2007).

Prostatectomies can also be performed laparoscopically to shorten recovery time. In this procedure, surgical tools are inserted through several small incisions. Laparoscopic surgery can be conducted using robotic arms to make very careful cuts, thereby reducing the risk of damage to healthy tissues (NCCN 2016b; Ku 2017). One study reported that robotic-assisted surgery was more effective than unassisted laparoscopic surgery at preventing PSA level rises that could indicate recurrence (Lee, Seo 2017).

Most men experience short-term urinary incontinence or sexual dysfunction after surgery (NCCN 2016b). Improvements in surgical techniques have reduced the number of men who experience long-term complications (Small 2015; Wallis 2017). The risk of long-term problems varies greatly based on individual characteristics, extent of the cancer, and skill of the surgeon (Goldenberg 2017). For instance, older patients or those whose nerves have been affected by the cancer are more likely to experience long-term erectile problems after surgery (NCCN 2016b).

Radiation Therapy

Men with prostate cancer that has not spread to surrounding tissues are commonly treated with radiation therapy. Radiation is also a valuable tool for recurrent disease and disease that has spread to lymph nodes (Small 2015; NCCN 2017b; NCCN 2016b). Radiation destroys cancer cells but can also cause damage to nearby healthy cells (NCI 2010).

External-beam radiation therapy uses a machine to deliver beams of photons to the prostate gland (NCCN 2016b). The radiation is carefully targeted to the cancer cells using digital imaging (NCI 2018b). Intensity-modulated radiation therapy is an advanced form of radiation that uses many carefully-calculated doses applied from various angles. This approach decreases the doses of radiation that reach normal organs and tissues. Intensity-modulated external-beam radiation has become the standard modality of radiation therapy for prostate cancer (Moon 2017).

Stereotactic body radiation therapy is a type of intensity-modulated radiation therapy used in recent years to treat men with localized prostate cancer. One advantage of this approach is that the treatment can be completed in about five visits (NCCN 2016b; Koskela 2017). Although this approach is a safe and effective way to treat prostate cancer, trials are currently under way to compare stereotactic body radiation therapy with other approaches (Kishan 2017; Kim 2016).

Intensity-modulated radiation therapy uses photon beams to irradiate the prostate, while a form of radiation therapy called proton therapy uses proton beams (NCCN 2016b). Proton beams release most of a dose of radiation at a specified depth. This may allow the use of higher doses of radiation without causing side effects involving nearby organs such as the bladder and rectum (Moon 2017). One recent study that enrolled 1,375 patients treated with proton therapy found that PSA levels remained low five years after treatment in 99%, 91%, and 86% of low-, intermediate-, and high-risk patients, respectively (Takagi 2017). Although this method is promising, long-term studies comparing it to intensity-modulated radiation therapy are needed (Magnuson 2017; Moon 2017).

Brachytherapy is another option for men with some early stage prostate cancers (NCCN 2017b). Brachytherapy involves the use of radiation-emitting devices called seeds that are about the size of a grain of rice. Using imaging techniques to guide placement, 40 to 100 seeds are implanted permanently or temporarily within the prostate. Because the radiation is delivered directly into the tumor, the dose of radiation can be high with minimal risk to healthy tissues (NCCN 2016b; Stish 2017). For patients with higher-risk cancer, brachytherapy can be combined with external beam radiation therapy and hormonal therapy (NCCN 2017b; Hannoun-Levi 2017).

Radiation therapy can cause short-term and long-term urinary, bowel, and sexual function symptoms (Lee 2015). External beam radiation therapy can also cause damage to the skin (NCCN 2016b). When data from many studies were analyzed together, patients treated with radiation were found to be more likely to have bowel symptoms, but less likely to have urinary or sexual function problems, compared with patients treated with surgery (Lardas 2017; Wallis 2017). New devices such as the SpaceOAR Hydrogel System, which creates a physical space between the prostate and rectum during radiation therapy, may increase protection of healthy tissues (Hamstra 2017; Wolf 2015; Augmenix 2017).

Refer to the Cancer Radiation Therapy protocol for more general information.

Cryotherapy

Cryotherapy, also called cryosurgery or cryoablation, is a newer treatment in which argon gas is sent through very thin needles into the prostate to freeze the tumor (NCCN 2016b). Cryotherapy is an option that is typically considered when radiation fails to completely destroy the cancer (NCCN 2017b); however, existing data on cryotherapy as an initial treatment are encouraging (Bahn 2012; Garcia-Barreras 2017; Durand 2014). One study compared cryotherapy with external beam radiation in men with newly diagnosed cancer that had not spread beyond the prostate. There was no difference between the two approaches in prostate cancer survival, and patients who received cryotherapy had fewer positive biopsies after three years (Donnelly 2010).  

One innovative physician, Gary Onik, MD, has had success treating localized prostate cancer with focused cryotherapy. The approach taken by Dr. Onik and his team involves carefully mapping the location of cancer in the process via a technique called three-dimensional prostate-mapping biopsy. Then, after the tumors have been precisely located, patients are treated with focal cryoablation, in which targeted cryotherapy is applied to the cancerous tissue. Dr. Onik’s team conducted a study in which they used this technique on 46 men. 

Impressively, biochemical disease-free survival was 89% after 10 years of follow-up, and the rate of biochemical disease-free survival did not differ by initial risk group. (This is important because men with higher-risk prostate cancer usually have a higher rate of recurrence and death from prostate cancer). Moreover, local recurrence was considerably less common in the group who underwent three-dimensional prostate mapping (4%) compared with those who underwent transrectal ultrasound (TRUS, 33%) (Onik 2014). A more comprehensive review of Dr. Onik’s pioneering work is available in the June, 2016 issue of Life Extension Magazine®, in an article titled “Major Advance in Screening and Treating Prostate Cancer.”

Hormone Therapy

Because androgens (male sex hormones) stimulate the growth of some prostate cancers, various types of hormone therapies are used to interfere with their actions (NCCN 2016b). Some hormone therapies stop the body from producing androgens, mainly testosterone, while others block the effect of testosterone on cancer cells (NCCN 2016b; NCI 2018b). Hormone therapy is a valuable tool used in all stages of prostate cancer except early low-risk disease (NCCN 2017b).

Hormone therapies targeting luteinizing hormone-releasing hormone (LHRH) prevent the testicles from making testosterone. Leuprolide (Lupron), goserelin (Zoladex), histrelin (Vantas), triptorelin (Trelstar), buserelin (Suprefact), and degarelix (Firmagon) are examples of such medications (NCCN 2016b; NCI 2018b). Another hormonal strategy for reducing testosterone is the use of certain forms of estrogens. Surgical removal of the testicles (orchiectomy) is used in some cases to dramatically reduce the amount of testosterone in the body (NCCN 2017b). 

Ketoconazole (Nizoral), a well-known antifungal medication, is sometimes used for its ability to inhibit production of testosterone at several locations, including the adrenal glands (NLM 2017; NCCN 2016a; NCI 2018b). Abiraterone (Zytiga) is another androgen synthesis inhibitor approved by the FDA in 2012 for use in men with metastatic castration-resistant prostate cancer, a term referring to prostate cancer that has progressed despite testosterone-lowering therapy (Maluf 2012). Abiraterone plus the corticosteroid prednisone is used either before or after chemotherapy, and may be combined with other hormone therapy (NCI 2013; Fizazi 2012; James 2017; Fizazi 2017).

Antiandrogens block testosterone receptors on tumor cells. Bicalutamide (Casodex), flutamide, nilutamide (Nilandron), and enzalutamide (Xtandi) are examples of antiandrogens (NCCN 2016b; NCCN 2017b).

The side effects of hormone therapy can vary from patient to patient and depend on the exact therapy used (NCCN 2016b). In general, hormone therapies can cause erectile dysfunction, hot flashes, mood changes, weight gain, loss of muscle, breast growth, and fatigue (NCCN 2016b; NCI 2018b; Gilbert 2017). Long-term use of hormone therapies can weaken the patient’s bones and increase the risk of diabetes and heart disease (NCCN 2016b; Gupta 2017; Thomsen 2017). 

Chemotherapy

Chemotherapy is an option for men with castration-resistant metastatic cancers (NCCN 2017b). Docetaxel is a well-established and commonly used chemotherapy drug in prostate cancer treatment regimens. Newer data on docetaxel suggest the drug may also help men with tumors that still respond to hormone therapy (in other words, are not castration-resistant), particularly those with metastases or high-risk non-metastatic cancer (NCCN 2017b; Patrikidou 2017; Puente 2017; James 2016). In the CHAARTED trial, docetaxel extended average survival by slightly over one year in men being treated with hormone therapy (Sweeney 2015). Common side effects of docetaxel include diarrhea, nausea, vomiting, and loss of appetite; fatigue and weakness; low white blood cell counts and fever; numbness, tingling, or burning in the hands and feet; hair loss; and mouth sores (NCCN 2016b; Bergin 2017; ACS 2016).

In 2010, the FDA approved the chemotherapy drug cabazitaxel (Jevtana) for men whose cancer is progressing despite previous treatment with a regimen containing docetaxel (NCCN 2017b; Eisenberger 2017). Researchers are investigating how to manage the side effects, optimize the dose, and select the right patients for this drug (Eisenberger 2017; Patel 2017). Mitoxantrone (Novantrone) is another FDA-approved chemotherapy drug available for patients who cannot tolerate docetaxel or cabazitaxel (NCCN 2017b).

Refer to the Chemotherapy protocol for more general information.

Immunotherapy

As of late 2017, the only FDA-approved immunotherapy for prostate cancer is sipuleucel-T (NCCN 2016b; Silvestri 2016). Sipuleucel-T is a treatment option for men with metastatic castration-resistant prostate cancer. White blood cells from the patient are treated in the lab with a protein that helps them recognize and attack cancer cells. The cells are then returned to the patient’s body (Virgo 2017; NCI 2018b). In a randomized controlled trial, men treated with sipuleucel-T lived about four months longer than controls (Small 2006). In a recent phase-II clinical trial, sipuleucel-T caused a greater antitumor immune response when the treatment occurred before hormone therapy (Antonarakis 2017). Further studies will be needed to determine whether this therapy can be more effective before the development of castration-resistant disease.

Treatment of Bone Metastases

In addition to general prostate cancer treatments such as chemotherapy and hormone therapy, there are several options that specifically treat bone metastases. External beam radiation can be targeted to the bones (NCCN 2017b). Radiopharmaceuticals such as radium-223 naturally accumulate in areas of the bone with metastases and destroy cancer cells (NCI 2018b; Sartor 2014). Other drugs, such as denosumab (Prolia) and zoledronate (Aclasta), strengthen bones affected by cancer or weakened through cancer treatment and can help prevent fractures (Traboulsi 2017; Hegemann 2017; Israeli 2008).

Participating in a Clinical Trial

Some men may want to consider participating in a clinical trial. Many of the treatments described in the “Novel and Emerging Strategies” and “Integrative Interventions” sections are currently being tested. It is important to recognize that treatments under investigation might have significant side effects or might not be effective (NCI 2018b; Vieweg 2007). Whether the tested treatment is successful or not, all clinical trials help inform future patient care. Men who want to learn more about ongoing clinical trials can consult with their medical team. The following online resources may also be helpful:

  1. National Comprehensive Cancer Network (NCCN): https://www.nccn.org/patients/resources/clinical_trials/find_trials.aspx
  2. National Cancer Institute: https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/trial-guide
  3. American Cancer Society: https://www.cancer.org/treatment/treatments-and-side-effects/clinical-trials/clinical-trials-matching-service-find-trial.html

Testosterone Replacement Therapy and Prostate Cancer

Testosterone deficiency affects up to a quarter of men over 40. The signs and symptoms of this condition can be severe and the long-term effects can be damaging. Men with low testosterone may experience reduced sexual function, depression, decreased muscle mass, increased fat mass, and weakened bones (Golla 2017). Supplemental testosterone, or testosterone replacement therapy, can improve many of these symptoms (Hackett 2016).

Historically, medical professionals warned against testosterone replacement for men who have, or have had, prostate cancer due to concern that it might stimulate cancer growth. Current research, however, shows that restoring normal testosterone levels with supplemental testosterone does not increase prostate cancer risk (Hackett 2016; Golla 2017; Debruyne 2017) and may be safe in some prostate cancer patients (Nguyen 2016).

Some data suggest that testosterone use may be safe during active surveillance (Golla 2017; Ory 2016; Morgentaler 2011). Moreover, emerging evidence even alludes to the idea that testosterone replacement during prostate cancer treatment may be less problematic than previously thought, although this is very controversial and still preliminary (Golla 2017). One early study measured serum testosterone levels in men who were candidates for active surveillance but opted for radical prostatectomy instead. Prostate tissue examination revealed that those with low testosterone had a greater chance of having more extensive disease than biopsy results had indicated (Ferro 2017); however, cause and effect is not clear. Two reviews of current research concluded that, in men with a history of prostate cancer, testosterone replacement therapy improved quality of life and did not appear to increase risk of disease progression or recurrence (Nguyen 2016; Pastuszak 2016).

More general information about testosterone replacement is provided in the Male Hormone Restoration protocol.

;