Free Shipping on All Orders $75 Or More!

Your Trusted Brand for Over 35 Years

Health Protocols

Exercise Enhancement

Benefits of Exercise

Anti-Aging Effects

Abundant evidence supports the anti-aging benefits of exercise. Even a modest amount of leisure time physical activity—just 75 minutes of brisk walking per week—has been associated with longer life expectancy.12 Also, regular exercise correlated with independence in a study of Japanese centenarians.41

Exercise influences several hallmarks of aging, including DNA repair, cellular senescence, and mitochondrial function.13 Resistance exercise decreases oxidative DNA damage in aging individuals14 and increases mitochondrial biogenesis—the creation of new mitochondria—in muscle and brain tissue.15

Exercise can help prevent cardiovascular disease during aging, and helps stave off sarcopenia, or age-related loss of muscle mass and strength.42,43 Improvements in muscle strength resulting from resistance exercise can increase functional capacity and reduce risk of disease and disability in old age.44 Physical activity, especially resistance strength training, also helps maintain healthy bone density during aging.45

Exercise also powerfully activates AMPK—a key regulator of energy metabolism and another major longevity factor.16 AMPK is an enzyme that promotes the burning of glucose and fats to generate cellular energy. AMPK also inhibits aberrant cell growth (ie, cancer), promotes the creation of new mitochondria, and increases insulin sensitivity.16,46,47

AMPK activation may be responsible for many of the health benefits of exercise; conversely, lack of AMPK activation may contribute to the detrimental health effects of a sedentary lifestyle.16,46

The antidiabetic agent metformin also activates AMPK and may mitigate other chronic diseases linked to inactivity, such as heart disease and cancer.46,48,49

Preclinical evidence suggests the magnitude of AMPK activation in response to exercise diminishes with age.50 Therefore, AMPK-activating agents, such as metformin and the plant extract Gynostemma pentaphyllum, may complement exercise in aging adults.

Protecting Against Immune Senescence

The progressive deterioration of the immune system that occurs with aging is termed immune senescence. Immune senescence is associated with poor response to vaccinations and increased risk of infection, cancer, cardiovascular disease, diabetes, and other age-related chronic diseases.51-53

Emerging evidence indicates regular exercise protects against immune senescence and may rejuvenate the aging immune system.51,54,55 In a study in healthy male subjects, those with better cardiorespiratory fitness had lower age-related accumulation of senescent and nonfunctional T cells—a signature feature of immune senescence.56

Human and animal studies have shown that regular exercise favorably affects other markers of immune senescence as well. These include an enhanced vaccination response, lower blood levels of inflammatory cytokines, greater natural killer (NK) cell activity, and better outcomes in viral infections and some cancers.57

Moderate-to-high intensity exercise (ie, 50% to 70% of maximal oxygen consumption) performed on a regular basis (eg, 30 minutes, five days per week) enhances immune function and lowers the incidence of chronic disease.51,55,58

Cardiovascular Protection

Exercise improves several cardiovascular risk parameters, including blood pressure, inflammation, glucose and insulin metabolism, endothelial function, cerebral blood flow, and blood lipids.59,60

A recent meta-analysis of nearly 400 randomized controlled trials with approximately 40,000 participants assessed the effects of endurance, dynamic resistance, isometric resistance, and combined endurance and resistance exercise interventions and antihypertensive medications (angiotensin-converting enzyme inhibitors, angiotensin-2 receptor blockers, β-blockers, calcium channel blockers, and diuretics) on systolic blood pressure levels in normal and hypertensive individuals.

Endurance and resistance exercise and all classes of antihypertensives lowered systolic blood pressure, as compared with controls. This effect was greater with anti-hypertensive medications across all populations. Among those with hypertension, there was no difference between medication use and endurance or resistance exercise in lowering blood pressure levels. Further research is needed to understand more fully how exercise lowers systolic blood pressure.61  

Exercise is also beneficial in the treatment of existing cardiovascular diseases.60,62 According to a review of 63 randomized controlled trials that enrolled nearly 15,000 patients with established coronary heart disease, exercise-based cardiac rehabilitation programs reduced mortality and hospitalizations due to heart disease. In the majority of these studies, exercise also improved patient quality of life.63

Note: Individuals with pre-existing cardiovascular disease should consult a qualified healthcare provider before embarking on an exercise program.

Cognitive Health

Physical activity can prevent cognitive decline in older adults and reduce the risk of neurological diseases, such as Alzheimer disease and Parkinson disease. Aerobic exercise reduces the loss of brain tissue that occurs with aging.64-68

Abundant evidence indicates physical activity and exercise enhance cognitive functioning and wellbeing across the human lifespan.64,69,70 In a study in 2,747 young adults aged 18‒30 years, greater aerobic fitness was associated with better verbal memory and faster psychomotor speed in middle age.70 Similarly, another study found middle-aged participants who engaged in the most leisure time physical activity were less likely to develop dementia 28 years later as compared with less-active participants.69

Exercise improves cognitive health by enhancing the transmission of information between nerve cells. Brain-derived neurotrophic factor, a signaling protein, appears to play a critical role in this process. Exercise increases the production of brain-derived neurotrophic factor in an area of the brain called the hippocampus, which is vital to learning and memory. Intriguingly, exercise may even increase the size of the hippocampus.64,65

Weight Management

According to recommendations from the American Heart Association and American College of Cardiology, long-term weight loss is best attained with lifestyle change that includes both a low-calorie diet and increased physical activity.71,72

Protection Against Diabetes

Exercise increases insulin sensitivity, helps control blood glucose levels, and improves cardiovascular risk factors, such as high blood pressure and elevated blood fats. Even a single exercise session induces many of these beneficial effects.73-75

Randomized trials have shown that combining physical activity with modest weight loss lowers type 2 diabetes risk by up to 58% in high-risk populations.73,74 In a four-year randomized controlled lifestyle-intervention trial, increased physical activity along with reduced caloric intake resulted in partial or complete remission of diabetes in 11.5% of participants during the first year; 7.3% of participants remained in partial or complete remission after four years.76

Chronic Pain Management

A detailed analysis of 264 published studies, which included nearly 20,000 participants, found that exercise and physical activity is associated with modest improvements in pain, functional capacity, and quality of life. Another review of published studies found that high-intensity strength exercises performed in the workplace three times weekly for 20 minutes markedly reduced pain in the shoulders and spine.77 In a separate analysis, supervised and home-based progressive shoulder strengthening and stretching exercises relieved shoulder pain. For low-grade shoulder pain, exercise provided short-term benefits similar in magnitude to a single steroid injection.78

Preventing Functional Decline with Age: Sarcopenia and Osteoporosis

Sarcopenia refers to progressive loss of muscle mass and strength with age. Osteoporosis is a condition marked by low bone mass, increased bone fragility, and greater fracture risk. Sarcopenia and osteoporosis are both common in older adults; increase risk of falls and fractures; and are linked to frailty, decreased mobility, and a higher risk of death.42,79-85

Physical activity and exercise training, including aerobic activity and strength training, increase bone mass, muscular strength, balance, and mobility.86-88 A review of the scientific literature found regular physical activity is the only intervention that consistently improves frailty and sarcopenia as well as functional performance in older adults.43

Improvements in physical function resulting from exercise have been demonstrated even in the frail elderly, including those living in institutional settings.89,90 A regular program of both aerobic and strength exercise is recommended for adults as well as frail older persons.43

Gut Microbiome Modulation

Microbes in the gastrointestinal tract play a critical role in human health. Increased microbial diversity has been associated with improved metabolism, immune function, and overall health. Disturbances to the balance of these microbes, including reduced diversity of the gut microbiome, have been linked to a wide range of diseases, including obesity, metabolic syndrome, and inflammatory bowel disease.91-94

While a range of factors, such as diet and antibiotic usage, influence the gut microbiome, early evidence suggests exercise may have a positive influence on the gut flora.91 In one study, professional athletes had a significantly higher diversity of gut microorganisms than control groups. Dietary differences between the athletes and control groups may have accounted for some of these effects.93,95

A study in mice found exercise altered gut microbial composition, improved intestinal structural integrity, and reduced gastrointestinal inflammation.96 In another study in mice, exercise increased abundance and diversity of the gut microbiome and protected against a toxin-induced reduction in microbial abundance.97