Free Shipping on All Orders $75 Or More!

Your Trusted Brand for Over 35 Years

Health Protocols

Breast Cancer

Breast Cancer Screening

Early detection is the best way to improve breast cancer outcomes. Women diagnosed with early-stage breast cancer that has not spread beyond the breast have an excellent prognosis (ASCO 2017). The ideal cancer screening programs find invasive cancers when they can be easily treated, without mistaking them for many of the benign or non-invasive diseases that would never be an immediate danger to the patient’s health.

Familiarity with one’s own breasts is important for breast cancer detection. In fact, many cancers are first detected by patients themselves during normal activities (PDQ Screening Prevention Editorial Board 2017b). However, systematic and routine breast self-examinations have not been shown to help find early breast cancer any better than general familiarity with one’s breasts. Many doctors now make the more general recommendation that women pay attention to their breasts and report any changes in their look or feel. Nevertheless, some women may prefer to conduct more formal and routine self-examinations, so we have included the guide below.

How to Do a Breast Self-Exam (Cleveland Clinic 2015)

  1. Lie down. Flatten your right breast by placing a pillow or towel under your right shoulder. Place your right arm behind your head. Examine your right breast with your left hand.
  2. Use the pads, not the tips, of the middle three fingers on your left hand. With fingers flat, press gently using a circular, rubbing motion and feel for lumps. In small, dime-sized circles without lifting the fingers, start at the outermost top edge of your breast and spiral in toward the nipple.
  3. Press firmly enough to feel the different breast tissues, using three different pressures. First, light pressure to just move the skin without jostling the tissue beneath, then medium pressure pressing midway into the tissue, and finally deep pressure to probe more deeply down to the ribs or to the point just short of discomfort.
  4. Completely feel all of the breast and chest area up under your armpit, up to the collarbone, and all the way over to your shoulder to cover breast tissue that extends outward.
  5. Gently squeeze the nipple and look for discharge.

After you have completely examined your right breast, examine your left breast using the same method. You may want to examine your breasts or do an extra exam while showering. It's easy to slide soapy hands over your skin and feel anything unusual. You should also check your breasts in a mirror, looking for any change in size or contour, dimpling of the skin, or spontaneous nipple discharge. Check for the same changes with your arms raised above your head.

Importantly, self-exams and general breast familiarity cannot replace screening mammography and clinical breast exams.

Clinical Breast Exam

A clinical breast examination may be conducted by a trained health care provider during a routine physical (PDQ Screening Prevention Editorial Board 2017b). Data continue to emerge that support this screening method. In one study, almost nine percent of the cancers were detected by clinical breast examination alone, and they would have been missed if the clinical breast exam performed by a physician had not been conducted (Provencher 2016).

Mammography

A mammogram is an X-ray of the breast that can detect even small tumors that cannot be felt, including DCIS (PDQ Screening Prevention Editorial Board 2017b; Niell 2017). In one study, mammography correctly identified about 90% of the women who truly had breast cancer (Mello 2017). In some cases, a benign breast condition may be detected with a mammogram, and follow-up tests are required to rule out cancer. The BI-RADS classification system was created in 1986 to standardize the reporting of the results of mammograms (Table 1) (Shikhman 2017; Flowers 2013; Neal 2010; Ojeda-Fournier 2009).

Table 1: BI-RADS Categories for Mammogram Results

Category

Description

Follow-up

0

Incomplete

Additional tests may be necessary.

1

Negative

No abnormality was found. Follow-up is routine screening.

2

Benign or non-cancerous finding

A benign condition was detected that should be considered during evaluation of future mammograms.

3

Probably benign finding

The findings are unlikely to be cancer, but are not definitely benign. More frequent follow-ups are recommended to check for any changes.

4

Suspicious abnormality

A biopsy is most often recommended.

5

Highly suggestive of cancer

A biopsy is necessary.

6

Known cancer (diagnosed in previous biopsy)

Follow-up depends on the purpose of the mammogram.

Mammograms expose the breast tissue to very small amounts of radiation (Gennaro 2017). Therefore, screening guidelines consider the risks and benefits of routine mammograms. Guidelines for screening mammography are somewhat inconsistent, but the independent United States Preventive Services Task Force recommends mammography every two years for women aged 50 to 74. Older women may switch to a less frequent schedule. Women at higher-than-normal risk should check with their healthcare providers to see if they may benefit from starting screening earlier (US Preventive Services Task Force 2016). The benefits of mammograms for screening women aged 40 to 49 years with no increased risk of breast cancer are still debated, because the risk of breast cancer in this age group is low and the rate of false positive results is high (Zervoudis 2014; Silva 2014). Importantly, recent data suggest routine mammography screening for any age group may not effectively reduce the rate of advanced breast cancer (Autier 2017). Instead, mammography programs detect many cases of DCIS, and some experts are concerned that patients with DCIS may be overtreated, receiving treatment for a condition that is not likely to become invasive (Seigneurin 2016; Jorgensen 2017). Women should consider their individual risk factors and discuss the risks and benefits of routine screening with their medical providers.

Thermography

Thermography is not an effective alternative to mammograms for breast cancer screening (Omranipour 2016; Gourd 2017). However, researchers are evaluating how this technique can be used to complement mammography (de Jesus Guirro 2017; Wishart 2010). A tumor in the breast typically has increased metabolism and blood flow compared with surrounding areas. These changes make the surface of the breast near the tumor slightly warmer (Ramirez-Torres 2017). The temperature difference may be detected by thermography, which uses infrared imaging (PDQ Screening Prevention Editorial Board 2017b; Garduno-Ramon 2017).

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a very sensitive test that can find some tumors not detected by a mammogram (PDQ Screening Prevention Editorial Board 2017b). Women who are at especially high risk for breast cancer should get an MRI along with a mammogram every year (Mainiero 2017; Sardanelli 2017; Cho 2017). This includes women with BRCA1 or BRCA2 mutations or women previously treated with radiation to the chest. Routine MRIs are not recommended for women at an average risk of breast cancer because MRI can detect many abnormalities that do not turn out to be cancer, possibly leading to unnecessary invasive diagnostic tests (ie, MRI screening has a high false-positive rate) (PDQ Screening Prevention Editorial Board 2017b).

Ultrasound

Breast ultrasonography is another technique that can be used for breast cancer screening. It is relatively easy to do in the clinic and is well-tolerated. Also, ultrasound does not expose the patient to radiation. Ultrasound can complement mammography, and may be useful in cases where mammography is less sensitive such as in younger women or those with denser breasts. Using breast ultrasound in conjunction with mammography may improve detection rates for early-stage cancers (Guo 2017).