Life Extension Magazine®
Editor’s Note: While this article may be somewhat technical for the average reader, it contains innovative, life-saving medical concepts that should be shared with your doctor. For this reason, we are publishing it in an attempt to improve the way that medicine is practiced. Ideally, doctors will integrate these critical procedures into their practice and “you as patients will be better served.” In today’s world of major scientific breakthroughs we are often left wondering why high-tech achievements are not incorporated into the everyday care of the patient. So called translational medicine—that is supposed to bring to the bedside that which we have learned at the bench (research laboratory)—is just not happening. Added to this is the medical profession’s failure to use the tools currently available to almost every practitioner. Therefore, as patients and consumers within the health industry, our protest should be not only that we are not benefiting in a timely fashion from the new advances in medicine made in the research laboratory, but also that given the proverbial tool bag of medical resources presently available, alas, many of these tools are not used at all. The following article presents to the reader concepts that are critical to our lives. Although the main focus is on laboratory testing, the same principles apply exactly to radiology and pathology, as well as to the findings of the history and physical examination. We have had the tools to employ concepts to prevent illness, to diagnose disease earlier and to achieve better treatment outcomes for many years, but they are not as widely nor as universally used as they should be. The tools described here are not expensive and are not elusive to the empowered patient and the caring and conscientious physician. I. Biologic Indicators, Medical Profiling and Concordance. II. Validation, Response Parameters and Stratification Once we have obtained validated biologic inputs, and hopefully have substantiated their importance through the concept of concordance, we now have a high-level medical profile not only to diagnose an illness earlier, but also to optimize a treatment strategy. If we have come this far as a “medical Columbo” then the use of response parameters logically follows. Response parameters are the gauges we use to determine objectively if the selected therapy is achieving its goal. For example, on a very elementary level, if within the process of medical profiling we determine that a patient has obesity and diabetes, we should at least select the response parameters of body weight, blood sugar and hemoglobin A1c to follow up on the condition of the patient in order to ascertain whether our therapy is effective. It is amazing to see how many patients with medical problems such as obesity and diabetes do not have these issues addressed despite having been placed on a formal medical therapy. Many of these same patients do not have the desired therapeutic response and continue to suffer the consequences of these medical conditions. To add insult to injury, many may also experience adverse effects that lead to morbidity and mortality. In a study reported in 1998, adverse drug reactions in the United States in 1994 were among the top ten leading causes of death, accounting for 106,000 fatalities,* not to mention an additional 2,216,000 serious adverse drug reactions.†[4] Thus, not only do we need to recognize the value of biologic indicators and of medical profiling and its subtleties, but also to acknowledge that we must use biologic endpoints to objectively grade our treatments. The proof of the pudding is in the eating.
In its highest form, medical profiling also invokes the process called stratification. In this course of action, we first obtain the patient’s biologic data via the processes of profiling, concordance and validation. Then, a determination is made to place the patient into high, intermediate or low risk categories involving organ systems vital to health. These include the cardiovascular, pulmonary, hepato-biliary, renal, gastrointestinal, male or female genitourinary, nervous system, skeletal system, endocrine, immune and cutaneous systems. This concept may be applied to situations that involve family history and the risk of a specific illness. It also should be used in situations where a diagnosis has been established and a grading of the apparent severity of the illness, i.e., stratification, has relevance to the nature of the treatment, its prognosis and its outcome. Organization: What a Concept! Unfortunately, what most often happens when lab tests are ordered is that the reports are put into the doctor’s inbox along with a morass of other paperwork. The doctor “eyeballs” the reports, looking to spot what might represent any abnormal finding. Often, the physician has not initialed the report to acknowledge that he has reviewed it and ideally that he has given more than a glancing thought to it. The report is then filed in the patient’s chart. Too often the “medical record” is a manila folder with assorted test results and other documents thrown together. There is no organization of data by category (i.e., laboratory, radiology, cardiology, pathology, consultations, office visits, correspondence and even routine physical exam assessments like weight and blood pressure) or by chronology, with sorting of oldest to newest data within the above categories. | |
A Practical Application of the Above Concepts 1. Take Advantage of Biomarkers 2. Confirm a Medical Problem with Concordant Testing 3. Validate Critical Laboratory Test Results
4. Plot Your Lab Results to Determine a Trend Line 5. Use Biomarkers as Response Parameters (Biologic Endpoints) If you have been diagnosed with osteopenia or osteoporosis, you may receive treatment with oral bisphosphonate medications such as Fosamax® or Actonel®, or intravenous bisphosphonates such as Aredia® or Zometa® to stop bone loss (bone resorption) and reverse osteoporosis. Such medications work by inhibiting the osteoclasts that break down bone. If anti-resorptive therapy has been successful, then a decrease in the metabolic breakdown products of the bone found in the urine will be confirmed. The latter test is called Pyrilinks-D or free deoxypyridinoline (Dpd). It is all too common to see patients taking bisphosphonates for many months or years without any testing to see if a key biologic endpoint of bone resorption has been altered. “If it’s broke, see if it is being fixed.” Some patients taking bisphosphonates do not absorb these agents well and may need dose modification or some other type of therapeutic change. Don’t waste a year or more of time and money without knowing if you are headed in the right direction. 6. Use Combined Variable Analysis The majority of patients that utilize the above approaches have realized the significance of the preceding concepts. It’s your life—take the very best care of it! Biography of Stephen B. Strum, M.D. | |||
References | |||
1. Scheidler J, et al. Prostate cancer: localization with three-dimensional proton MR spectro scopic imaging—clinicopathologic study. Radiology 213:473-80, 1999. |