Life Extension Magazine®

Issue: Apr 2014


Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure.

BACKGROUND: B-type natriuretic peptide is released from the cardiac ventricles in response to increased wall tension. METHODS: We conducted a prospective study of 1,586 patients who came to the emergency department with acute dyspnea and whose B-type natriuretic peptide was measured with a bedside assay. The clinical diagnosis of congestive heart failure was adjudicated by two independent cardiologists, who were blinded to the results of the B-type natriuretic peptide assay. RESULTS: The final diagnosis was dyspnea due to congestive heart failure in 744 patients (47%), dyspnea due to noncardiac causes in 72 patients with a history of left ventricular dysfunction (5%), and no finding of congestive heart failure in 770 patients (49%). B-type natriuretic peptide levels by themselves were more accurate than any historical or physical findings or laboratory values in identifying congestive heart failure as the cause of dyspnea. The diagnostic accuracy of B-type natriuretic peptide at a cutoff of 100 pg per milliliter was 83.4%. The negative predictive value of B-type natriuretic peptide at levels of less than 50 pg per milliliter was 96%. In multiple logistic-regression analysis, measurements of B-type natriuretic peptide added significant independent predictive power to other clinical variables in models predicting which patients had congestive heart failure. CONCLUSIONS: Used in conjunction with other clinical information, rapid measurement of B-type natriuretic peptide is useful in establishing or excluding the diagnosis of congestive heart failure in patients with acute dyspnea.

N Engl J Med. 2002 Jul 18;347(3):161-7

Metabolic cardiology: the missing link in cardiovascular disease.

The importance of supporting energy production in heart cells and the preservation of the mitochondria in these cells will be the focus of a new frontier in cardiovascular prevention, treatment, and management. Many physicians are not trained to look at heart disease in terms of cellular biochemistry; therefore, the challenge in any metabolic cardiology discussion is in taking the conversation from the “bench to the bedside.” An understanding of the vital role that adenosine triphosphate (ATP) plays in the heart is critical for any physician or clinician considering therapeutic options that support ATP production and turnover in jeopardized cardiac muscle cells. Metabolic therapies that help cardiomyocytes meet their absolute need for ATP fulfill a major clinical challenge of preserving pulsatile cardiac function while maintaining cell and tissue viability. D-ribose, L-carnitine, and coenzyme Q10 work in synergy to help the ischemic or hypoxic heart preserve its energy charge. This article introduces how ATP, diastolic heart function, and metabolic support help maintain cardiac energy by preserving ATP substrates. Part 2 will investigate an in-depth biochemical discussion of congestive heart failure with physiologic, pathophysiologic, and treatment considerations.

Altern Ther Health Med. 2009 Mar-Apr;15(2):48-50

Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet.

Aging is a condition which favors the development of atherosclerosis, which has been associated with a breakdown in repair processes that occurs in response to cell damage. The dysregulation of the biological systems associated with aging are produced partly through damage which accumulates over time. One major source of this injury is oxidative stress, which can impair biological structures and the mechanisms by which they are repaired. These mechanisms are based on the pathogenesis of endothelial dysfunction, which in turn is associated with cardiovascular disease, carcinogenesis and aging. The dependent dysfunction of aging has been correlated with a reduction in the number and/or functional activity of endothelial progenitor cells, which could hinder the repair and regeneration of the endothelium. In addition, aging, inflammation and oxidative stress are endogenous factors that cause telomere shortening, which is dependent on oxidative cell damage. Moreover, telomere length correlates with lifestyle and the consumption of a healthy diet. Thus, diseases associated with aging and age may be caused by the long-term effects of oxidative damage, which are modified by genetic and environmental factors. Considering that diet is a very important source of antioxidants, in this review we will analyze the relationship between oxidative stress, aging, and the mechanisms which may be involved in a higher survival rate and a lower incidence of the diseases associated with aging in populations which follow a healthy diet.

Int J Mol Sci. 2013 Apr 24;14(5):8869-89

Relationship between plasma coenzyme Q10, asymmetric dimethylarginine and arterial stiffness in patients with phenotypic or genotypic familial hypercholesterolemia on long-term statin therapy.

OBJECTIVE: We investigated whether statin-treated heterozygous familial hypercholesterolemic (FH) patients have lower plasma coenzyme Q(10) (CoQ(10)) levels than low-density lipoprotein receptor (LDLR) mutation negative FH patients on equivalent statin doses, and whether lower CoQ(10) concentrations are associated with increased arterial stiffness. METHODS: Thirty LDLR mutation negative patients with clinical FH and 30 mutation positive FH patients matched for gender, statin duration and dose, and a further 30 controls were studied. Plasma CoQ(10) and asymmetric dimethylarginine (ADMA) levels were measured by HPLC and the augmentation index by pulse wave analysis. RESULTS: Plasma CoQ(10) levels, and the ratios of CoQ(10) to total cholesterol and LDL-cholesterol were similar in treated FH patients with identified LDLR mutations to mutation negative patients on equivalent doses of statin therapy (p>0.05). CoQ(10) and lipid levels were also comparable to controls not using any lipid modifying treatment. Arterial stiffness was higher in mutation negative patients (p=0.04) and there was a trend for an increase in mutation positive patients (p=0.09). ADMA was higher in the mutation positive group (p<0.01). The augmentation index corrected for age, blood pressure, and heart rate, was negatively correlated with plasma CoQ(10) within FH patients (p<0.05). CONCLUSION: Long-term, high-dose statin therapy does not lead to subnormal CoQ(10) concentrations in patients with phenotypic or genotypic FH. Arterial stiffness is elevated in FH patients compared to untreated controls, and low CoQ(10) levels are associated with increased arterial stiffness. CoQ(10) supplementation trials are warranted in FH patients.

Atherosclerosis. 2011 Sep;218(1):188-93

Effects of coenzyme Q10 supplementation on activities of selected antioxidative enzymes and lipid peroxidation in hypertensive patients treated with indapamide. A pilot study.

INTRODUCTION: An increase in oxidative stress is strongly documented in hypertensive patients. In blood vessels, oxidative stress increases the production of superoxide anion (O(2) (•-)) that reacts with nitric oxide (NO) and impairs the ability of endothelium to relax. Many reports indicate a beneficial effect of coenzyme Q10 (CoQ) in hypertension. Coenzyme Q10 therapy may lower O(2) (•-) and thus decrease the complications associated with hypertension. The aim of our study was to evaluate the effects of CoQ supplementation on antioxidative enzyme activities and lipid peroxidation in elderly hypertensive patients. MATERIAL AND METHODS: We determined the activities of superoxide dismutase (SOD-1) and glutathione peroxidase (GSH-Px) and the concentration of malondialdehyde (MDA) in erythrocytes of 27 elderly (mean age 72.5 ±6.1 year) hypertensive patients treated with indapamide at baseline and after 12 weeks of CoQ supplementation (60 mg twice a day) in comparison with 30 healthy elderly volunteers (mean age 76.8 ±8.5 year). RESULTS: Decrease of SOD-1 (p < 0.001) and insignificant reduction of GSH-Px activities and increase of MDA (p < 0.001) level were observed in hypertensive patients in comparison to healthy volunteers before supplementation. Coenzyme Q10 administration resulted in a significant increase only in SOD-1 activity (p < 0.001). CONCLUSIONS: The present study indicates that CoQ improves the most important component of the antioxidant defence system - SOD-1, which is responsible for O(2) (•-) scavenging. Coenzyme Q10 may be used as an additional therapeutic agent for prophylaxis and treatment of hypertension in elderly patients.

Arch Med Sci. 2010 Aug 30;6(4):513-8

The role of oral coenzyme Q10 in patients undergoing coronary artery bypass graft surgery.

OBJECTIVE: Cardiopulmonary bypass (CPB) is known to induce oxidative stress. Because total antioxidant level is reduced during CPB, the supplementation of an antioxidant might help in attenuating the oxidative stress response. The authors sought to evaluate the efficacy of oral coenzyme Q10, in attenuating the oxidative stress to CPB and altering the clinical outcome in patients undergoing coronary artery bypass graft (CABG) surgery. DESIGN: A prospective, randomized, single-center clinical study. SETTING: A cardiothoracic center of a tertiary hospital. PARTICIPANTS: Thirty patients scheduled for elective CABG surgery. INTERVENTIONS: The study group (n = 15) received oral coenzyme Q10, 150 to 180 mg/d, for 7 to 10 days preoperatively, whereas the control group (n = 15) did not receive any antioxidant or placebo. The anesthesia technique was standardized in both groups. Blood samples for total antioxidant level, blood glucose level, and clinical outcome parameters up to 24 hours postoperatively were compared. MEASUREMENTS AND MAIN RESULTS: There was no difference in the antioxidant level between the 2 groups at any point of time. However, in the study group, 24 hours after aortic clamp release, it was significantly higher than baseline (p < 0.05). The blood glucose was significantly lower in the study group at aortic clamp removal and 4 hours after clamp removal as compared with the control group (p = 0.01). The study group had significantly fewer reperfusion arrhythmias, lower total inotropic requirement, mediastinal drainage, blood product requirement, and shorter hospital stays compared with the control group. CONCLUSION: Oral coenzyme Q10 therapy for 7 to 10 days preoperatively could improve clinical outcome in patients undergoing CABG surgery. A larger study group is recommended for confirmation.

J Cardiothorac Vasc Anesth. 2008 Dec;22(6):832-9

Augmented efficacy of tamoxifen in rat breast tumorigenesis when gavaged along with riboflavin, niacin, and CoQ10: effects on lipid peroxidation and antioxidants in mitochondria.

Reactive oxygen species (ROS) play a major role in causing mitochondrial changes linked to cancer and metastasis. Uptake of antioxidants by tissue to reduce the ROS production could be instrumental in controlling cancer. Tamoxifen (TAM), a nonsteroidal anti-estrogen drug most used in the chemotherapy and chemoprevention of breast cancer. Riboflavin, niacin and coenzyme Q10 (CoQ10) are proved to be potent antioxidants and protective agents against many diseases including cancer. The objective of this research is to determine the therapeutic efficacy of combinatorial therapy on mammary carcinoma bearing rats in terms of the mitochondrial lipid peroxidation and antioxidant status especially MnSOD. Female albino rats of Sprague-Dawley strain were selected for the investigation. Mammary carcinoma was induced with 7,12-dimethyl benz(a)anthracene (DMBA: 25 mg), and the treatment was started by the oral administration of TAM (10 mg/kg body weight/day) along with riboflavin (45 mg/kg body weight/day), niacin (100 mg/kg body weight/day) and CoQ10 (40 mg/kg body weight/day) for 28 days. The levels of lipid peroxides, activities of enzymic and non-enzymic antioxidants were measured in the mitochondria isolated from the mammary gland and liver of control and experimental rats. Rats treated with DMBA showed an increase in mitochondrial lipid peroxidation (mammary gland 52.3%; liver 25.1%) accompanied by high malondialdehyde levels along with lowered activities of mitochondrial enzymic antioxidants [superoxide dismutase (mammary gland 19.9%; liver 24.8%), catalase (mammary gland 50%; liver 19.7%), glutathione peroxidase (mammary gland 47.8%; liver 31.1%)] and non-enzymic antioxidants [reduced glutathione (mammary gland 14.3%; liver 13.3%), Vitamin C (mammary gland 6.49%; liver 21.4%) and E (mammary gland 20.3%; liver 22.2%)]. Administration of combinatorial therapy restored lipid peroxide level and the activities of enzymic and non-enzymic antioxidants to near normalcy. In addition, antitumour activity was also found to be enhanced which is evident from the increased expression of tumour suppressor gene MnSOD thereby preventing cancer cell proliferation. These results suggested that TAM treatment is the most effective during co-administration of riboflavin, niacin and CoQ10 in terms of mitochondrial antioxidant and antitumour activity.

Chem Biol Interact. 2005 Feb 28;152(1):49-58

Suppression of azoxymethane-induced colonic premalignant lesion formation by coenzyme Q10 in rats.

Reactive oxygen species cause damage to proteins, lipids and DNA. Coenzyme Q10 (CoQ10) is a compound with mitochondrial bioenergetic functions. The reduced form of CoQ10 shows antioxidant activity. In the present study, effects of CoQ10 on development of azoxymethane (AOM)-induced aberrant crypt foci (ACF) and mucin-depleted foci (MDF) in F344 male rats were investigated. To induce ACF and MDF, 6-week old rats were given two weekly subcutaneous injections of AOM (15 mg/kg body weight) and also received a control diet or experimental diets containing CoQ10 (200 or 500 ppm) for 4 weeks, starting one day before the first dose of AOM. At 10 weeks of age, all animals were sacrificed and their colons were evaluated for numbers and sizes of ACF and MDF. Administration of 200 and 500 ppm CoQ10 resulted in reduction of ACF numbers, to 77% and 68% of the carcinogen control value, respectively. The percentages of ACF consisting of more than 4 crypts in these groups were also significantly lower than in the controls. Treatment with 500 ppm CoQ10 furthermore decreased the number of sialomucin-producing ACF and MDF per colon to 42% and 38% of the carcinogen control value without CoQ10, respectively. These results suggest that CoQ10 may be an effective chemopreventive agent against colon carcinogenesis.

Asian Pac J Cancer Prev. 2006 Oct-Dec;7(4):599-603

Coenzyme Q10 attenuated DMH-induced precancerous lesions in SD rats.

Coenzyme Q10 (CoQ10) is known to be a compound with mitochondrial bioenergetic functions and antioxidant activity. In this study, we evaluated the effect of CoQ10 on the formation of aberrant crypt foci (ACF) induced by 1,2-dimethylhydrazine (DMH), DMH-induced leukocytic DNA damage and gene expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) by real-time PCR in colonic mucosa of male SD rats. The animals were divided into three groups and fed a casein-based high-fat and low fiber diet (100 g lard+20 g cellulose/kg diet) with or without CoQ10 (0.4 mg in soybean oil/kg BW/d, i.p.). One week after beginning the diets, the rats were subjected to 6 wk of treatment with DMH (30 mg/kg/wk, s.c.) and CoQ10 treatments continued over the entirety of the experimental period (59 d). Administration of CoQ10 resulted in reduction of ACF numbers, to 20% of the carcinogen control value. CoQ10 supplementation induced an antigenotoxic effect on DMH-induced DNA damage in the blood cells. Colonic mucosa of DMH-injected rats had significantly greater COX-2 and iNOS gene expression than those of control rats, while treatment with CoQ10 induced an inhibitory effect on over-expression of COX-2 and iNOS in colon tumors. Our results provide evidence that CoQ10 has a protective effect on the process of colon carcinogenesis, suppressing the development of preneoplastic lesions, possibly by modulating COX-2 and iNOS gene expression in colonic mucosa and DNA damage in leukocytes, suggesting that CoQ10 has chemotherapeutic activity.

J Nutr Sci Vitaminol (Tokyo). 2010;56(2):139-44

Coenzyme Q10 to Treat Neurological Disorders: Basic Mechanisms, Clinical Outcomes, and Future Research Direction.

Coenzyme Q10 (CoQ10) plays a pivotal role in mitochondrial respiratory chain which is the cell power supply. CoQ10 serves as a physiological electron (e-) shuttle from complexes I and II to complex III, as well as a potent antioxidant. Neurons are characterized by high rates of metabolic activity and need to respond promptly to activity-dependent fluctuations in bioenergetic demand. Consequently, it is not surprising that mitochondrial alterations can promote neuronal dysfunction and degeneration. In several neurological disorders, dysfunction of the respiratory chain leads to reduced ATP levels and increased generation of reactive oxygen species. CoQ10 supplementation has been widely used to treat aging, stroke, neuromuscular diseases, Parkinson’s disease, Alzheimer’s disease, progressive supranuclear palsy, autosomal recessive cerebellar ataxias, amyotrophic lateral sclerosis and Huntington’s disease. Here we discuss a large number of preclinical and clinical trials for CoQ10. The mechanisms underlying the disease-modifying effects of CoQ10 are the principle subject of the current integrative review. The rational applications as a therapeutic agent in neurological disorders are discussed.

CNS Neurol Disord Drug Targets. 2013 Apr 4

Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer’s disease.

Increased oxidative stress is implicated in the pathogenesis of Alzheimer’s disease (AD). A large body of evidence suggests that mitochondrial dysfunction and increased reactive oxygen species occur prior to amyloid-b (Ab) deposition. Coenzyme Q10 (CoQ10), a component of the mitochondrial electron transport chain, is well characterized as a neuroprotective antioxidant in animal models and human trials of Huntington’s disease and Parkinson’s disease, and reduces plaque burden in AbPP/PS1 mice. We now show that CoQ10 reduces oxidative stress and amyloid pathology and improves behavioral performance in the Tg19959 mouse model of AD. CoQ10 treatment decreased brain levels of protein carbonyls, a marker of oxidative stress. CoQ10 treatment resulted in decreased plaque area and number in hippocampus and in overlying cortex immunostained with an Ab42-specific antibody. Brain Ab42 levels were also decreased by CoQ10 supplementation. Levels of amyloid-b protein precursor (AbPP) b-carboxyterminal fragments were decreased. Importantly, CoQ10-treated mice showed improved cognitive performance during Morris water maze testing. Our results show decreased pathology and improved behavior in transgenic AD mice treated with the naturally occurring antioxidant compound CoQ10. CoQ10 is well tolerated in humans and may be promising for therapeutic trials in AD.

J Alzheimers Dis. 2011;27(1):211-23


Immediate and Long-term Clinical Benefits of a Topical Treatment for Facial Lines and Wrinkles.

Objective: To evaluate the efficacy and tolerance of a novel line treatment for periocular and perioral wrinkles. The line treatment was formulated with multiple growth factors, antioxidants, and a collagen-building peptide-ingredients that have been shown to increase collagen levels and provide long-term aesthetic benefits. To help provide immediate smoothing effects, hyaluronic acid filling spheres and a muscle contraction-inhibiting peptide were also included in the formulation. Design: Three-month, single-center, open-label, clinical study with clinical assessments at Baseline, Minutes (within 15 minutes of initial application), Month 1, and Month 3. Treatment: Subjects treated periocular and perioral wrinkles twice daily for three months with the line treatment. Participants: Thirty-seven females, 33 to 45 years of age, with mild-to-moderate, fine and coarse periocular and perioral wrinkles, were enrolled in the study. Measurements: Investigator assessments of fine and coarse periocular and perioral wrinkles, digital photography, and tolerance assessments were conducted at all visits. Subject self-assessment questionnaires were conducted within 15 minutes of initial
application and at Month 3. Results: Investigator assessments of both periocular and perioral wrinkles showed statistically significant improvements over Baseline within minutes of initial application; these positive findings continued to improve through Months 1 and 3 (all P</=0.0003). No treatment-related adverse events were reported. Conclusions: The results from this study demonstrate that this uniquely formulated line treatment was well tolerated and provided both immediate and long-term improvements in the appearance of fine and coarse wrinkles.

J Clin Aesthet Dermatol. 2009 Mar;2(3):38-43

DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein.

The signaling pathway from phosphoinositide 3-kinase to the protein kinase Akt controls organismal life-span in invertebrates and cell survival and proliferation in mammals by inhibiting the activity of members of the FOXO family of transcription factors. We show that mammalian FOXO3a also functions at the G2 to M checkpoint in the cell cycle and triggers the repair of damaged DNA. By gene array analysis, FOXO3a was found to modulate the expression of several genes that regulate the cellular response to stress at the G2-M checkpoint. The growth arrest and DNA damage response gene Gadd45a appeared to be a direct target of FOXO3a that mediates part of FOXO3a’s effects on DNA repair. These findings indicate that in mammals FOXO3a regulates the resistance of cells to stress by inducing DNA repair and thereby may also affect organismal life span.

Science. 2002 Apr 19;296(5567):530-4

Down-regulation of a forkhead transcription factor, FOXO3a, accelerates cellular senescence in human dermal fibroblasts.

The signaling pathway of insulin/insulin-like growth factor/phosphatidylinositol-3 kinase/Akt/forkhead transcription factors is known to control life span and senescence in organisms ranging from yeast to mice. The FOXO family of forkhead transcription factors, FOXO1, FOXO3a, and FOXO4, play a critical role in this signal transduction pathway. However, the impact of FOXO3a activation on life span of primary cultured human dermal fibroblasts (HDFs) is unknown. To investigate the role of FOXO3a in the regulation of cellular senescence, we prepared FOXO3a-siRNA stable HDFs. We found that the down-regulation of FOXO3a RNA and protein in HDFs induced many senescent phenotypes, including changes in cell morphology, increases in population doubling times, senescence-associated beta-galactosidase staining and the cellular reactive oxygen species, and up-regulation of p53/p21 protein expression. Our data provide evidence of the key role of FOXO3a transcription factor as a mediator of cellular senescence in HDFs, and suggest that the mechanism of senescence is conserved in HDFs.

J Gerontol A Biol Sci Med Sci. 2005 Jan;60(1):4-9

UV-induced DNA damage initiates release of MMP-1 in human skin.

Destruction of collagen is a hallmark of photoaging. The major enzyme responsible for collagen 1 digestion, matrix metalloproteinase-1 (MMP-1), is induced by exposure to sunlight. To study the molecular trigger for this induction, human skin was ultraviolet-B (UVB)-irradiated and treated with liposome-encapsulated DNA repair enzymes. The photolyase-mediated DNA repair of epidermal UV damage was associated with a reduction of MMP-1 mRNA and protein expression in both the epidermal and dermal compartments of the skin. The role of the epidermal cells in MMP-1 induction in the fibroblasts was examined when human epidermal keratinocytes were irradiated with UVB and their media were transferred to unirradiated human dermal fibroblasts. Transfer of media from irradiated keratinocytes to unirradiated fibroblasts enhanced MMP-1 mRNA and protein. Thus, UV damage to keratinocytes of the epidermis may participate in the destruction of collagen in the dermis by release of soluble mediators that signal fibroblasts to release MMP-1. The MMP-1 induction was reduced when the keratinocytes were treated with DNA repair enzymes T4 endonuclease V or UV endonuclease prior to transfer of the media to fibroblasts. This implies that UVB, which deposits most of its energy on the chromatin of the epidermal keratinocytes and to a lesser extent in the upper dermis, has a significant role in photoaging. DNA damage in the keratinocytes initiates one of the signals for MMP-1 release, and enhancing DNA repair can reduce MMP-1 expression in human skin cells and tissue.

Exp Dermatol. 2008 Dec;17(12):1037-44

Matrix-degrading metalloproteinases in photoaging.

UV radiation from the sun impacts skin health adversely through complex, multiple molecular pathways. Premature skin aging (photoaging) is among the most widely appreciated harmful effects of chronic exposure to solar UV radiation. Extensive damage to the dermal connective tissue is a hallmark of photoaged skin. Disruption of the normal architecture of skin connective tissue impairs skin function and causes it to look aged. UV irradiation induces expression of certain members of the matrix metalloproteinase (MMP) family, which degrade collagen and other extracellular matrix proteins that comprise the dermal connective tissue. Although the critical role of MMPs in photoaging is undeniable, important questions remain. This article summarizes our current understanding of the role of MMPs in the photoaging process and presents new data that (1) describe the expression and regulation by UV irradiation of all members of the MMP family in human skin in vivo and (2) quantify the relative contributions of epidermis and dermis to the expression of UV irradiation-induced MMPs in human skin in vivo.

J Investig Dermatol Symp Proc. 2009 Aug;14(1):20-4

Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation.

Reduced synthesis of collagen types I and III is characteristic of chronologically aged skin. The present report provides evidence that both cellular fibroblast aging and defective mechanical stimulation in the aged tissue contribute to reduced collagen synthesis. The reduction in collagen synthesis due to fibroblast aging was demonstrated by a lower in vitro production of type I procollagen by dermal fibroblasts isolated from skin of young (18 to 29 years) versus old (80+ years) individuals (82 +/- 16 versus 56 +/- 8 ng/ml; P < 0.05). A reduction in mechanical stimulation in chronologically aged skin was inferred from morphological, ultrastructural, and fluorescence microscopic studies. These studies, comparing dermal sections from young and old individuals, demonstrated a greater percentage of the cell surface attached to collagen fibers (78 +/- 6 versus 58 +/- 8%; P < 0.01) and more extensive cell spreading (1.0 +/- 0.3 vs. 0.5 +/- 0.3; P < 0.05) in young skin compared with old skin. These features are consistent with a lower level of mechanical stimulation on the cells in old versus young skin. Based on the findings presented here, we conclude that reduced collagen synthesis in chronologically aged skin reflects at least two different underlying mechanisms: cellular fibroblast aging and a lower level of mechanical stimulation.

Am J Pathol. 2006 Jun;168(6):1861-8

LOXL as a target to increase the elastin content in adult skin: a dill extract induces the LOXL gene expression.

The lysyl oxidases lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) are responsible for elastin cross-linking. It was shown recently that LOXL is essential for the elastic fibres homeostasis and for their maintenance at adult age. We first determined whether or not elastin, LOX and LOXL are less expressed during adulthood. The LOX and LOXL mRNA level, quantified by real-time reverse transcriptase-polymerase chain reaction decreased in adult skin fibroblasts compared with fibroblasts from children. In contrast, the elastin mRNA level remains stable at all ages. The goal of this study was to induce elastogenesis at the adult age. Therefore, both enzymes, and in particular LOXL, of which expression is the most affected by age, could be targeted to induce elastogenesis in adult skin. We screened a library of about 1000 active ingredients to find activators capable to stimulate specifically the LOXL gene expression in adult dermal fibroblasts. The positive effect of selected active ingredients was confirmed on fibroblasts grown on monolayers and on dermal and skin equivalent cultures. One extract, obtained from dill (LYS’LASTINE V, Engelhard, Lyon, France), stimulates the LOXL gene expression in dermal equivalents (+64% increase in the LOXL mRNA level when compared with control). At the same time, the elastin detection is increased in dermal equivalents and under the dermal-epidermal junction of skin equivalents, without increase of the elastin mRNA. In conclusion, LOXL can be considered as a new target to reinduce elastogenesis. Its stimulation by a dill extract is correlated with increased elastin detection, suggesting an increase in elastogenesis efficiency.

Exp Dermatol. 2006 Aug;15(8):574-81

Elastic fiber and microvascular abnormalities in aging skin.

In summary, the aging process in skin has at least two major manifestations: elastic fiber abnormalities involving degradation and assembly, and microvascular wall alterations of widening and atrophy depending upon the functional state of the veil cell. The abnormalities of the elastic fiber network most likely correlate with the increasing cutaneous laxity associated with aging. The microvascular abnormalities are not easily related to any specific clinical feature of aging skin. The finding of identical abnormalities in the skin of juvenile diabetics strengthens this hypothesis, as well as suggesting that these alterations are accelerated in diabetic patients. Diabetic skin might be another model system for studying cutaneous aging.

Dermatol Clin. 1986 Jul;4(3):391-405

A novel anti-ageing mechanism for retinol: induction of dermal elastin synthesis and elastin fibre formation.

Dermal elastic fibres are extracellular matrix protein complexes produced by fibroblasts and involved in skin elasticity. Elastin fibres decrease with age as a result of reduced synthesis and increased degradation, resulting in skin sagging and reduced skin elasticity. In this study, we show that retinol (ROL), known to enhance dermal collagen production, is also enhancing elastin fibre formation. ROL induced elastin gene expression and elastin fibre formation in cultured human dermal fibroblasts. Topical treatment of cultured human skin explants with a low dose (0.04%) of ROL increased mRNA and protein levels of tropoelastin and of fibrillin-1, an elastin accessory protein, as documented by QPCR and immunohistochemistry staining. Luna staining confirmed the increased elastin fibre network in the ROL-treated skin explants, as compared with untreated controls. These data demonstrate that ROL exerts its anti-ageing benefits not only via enhanced epidermal proliferation and increased collagen production, but also through an increase in elastin production and assembly.

Int J Cosmet Sci. 2011 Feb;33(1):62-9

Fibulin-2 and fibulin-5 cooperatively function to form the internal elastic lamina and protect from vascular injury.

OBJECTIVE: Recent findings on the role of fibulin-5 (Fbln5) have provided substantial progress in understanding the molecular mechanism of elastic fiber assembly in vitro. However, little is known about differential roles of fibulins in the elastogenesis of blood vessels. Here, we generated double knockout mice for Fbln5 and Fbln2 (termed DKO) and examined the role of fibulins-2 and -5 in development and injury response of the blood vessel wall. METHODS AND RESULTS: Fibulin-2 is distinctly located in the subendothelial matrix, whereas fibulin-5 is observed throughout the vessel wall. All of the elastic laminae, including the internal elastic lamina (IEL), were severely disorganized in DKO mice, which was not observed in single knockout mice for Fbln2 or Fbln5. Furthermore, DKO vessels displayed upregulation of vascular adhesion molecules, tissue factor expression, and thrombus formation with marked dilation and thinning of the vessel wall after carotid artery ligation-injury. CONCLUSIONS: Fibulin-2 and fibulin-5 cooperatively function to form the IEL during postnatal development by directing the assembly of elastic fibers, and are responsible for maintenance of the adult vessel wall after injury. The DKO mouse will serve as a unique animal model to test the effect of vessel integrity during various pathological insults.

Arterioscler Thromb Vasc Biol. 2010 Jan;30(1):68-74


Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures.

Our objectives were to: (1) confirm elongation products of palmitoleic acid (16:1 cis-9) elongation in vitro using stable isotopes and (2) evaluate if exogenous supplementation of palmitoleic acid, elongation products, or both are responsible for decreased desaturation and lipogenesis rates observed with palmitoleic acid supplementation in bovine adipocytes. Stromal vascular cultures were isolated from adipose tissue of two beef carcasses, allowed to reach confluence, held for 2 days, and differentiated with a standard hormone cocktail (day 0). On day 2, secondary differentiation media containing 1 of 4 fatty acid treatments [0 µM fatty acid (control), or 150 µM palmitic (16:0), palmitoleic, or cis-vaccenic (18:1 cis-11)] was added for 4 days. On day 6, cells were incubated with [(13)C] 16:1, [(13)C] 2, or [(13)C] 18:0 to estimate elongation, lipogenic, and desaturation rates using gas chromatography-mass spectrometry. Enrichment of [(13)C] 18:1 cis-11 confirmed 18:1 cis-11 is an elongation product of 16:1. Additionally, [(13)C] label was seen in 20:1 cis-13 and cis-9, cis-11 CLA. Synthesis of [(13)C] 16:0 from [(13)C] 2 was reduced (P < 0.05) in palmitoleic acid and cis-vaccenic acid-treated compared with control cells following 36 h incubation. By 12 h of [(13)C] 18:0 incubation, cells supplemented with palmitoleic acid had reduced (P < 0.05) [(13)C] 18:1 cis-9 compared with all other treatments. Gene expression and fatty acid results support isotopic data for lipogenesis and desaturation. Therefore, palmitoleic acid is actively elongated in vitro and its elongation product, cis-vaccenic acid, can also reduce lipogenesis. However, inhibition of desaturation can be directly attributed to palmitoleic acid and not its elongation products, 18:1 cis-11 or 20:1 cis-13.

Lipids. 2012 Dec;47(12):1143-53

Supplemental palmitoleic (C16:1 cis-9) acid reduces lipogenesis and desaturation in bovine adipocyte cultures.

Our objective was to determine if palmitoleic (C16:1 cis-9) acid supplementation to primary bovine adipocytes regulates lipogenic gene expression and rates of lipogenesis. Stromal vascular cells were isolated from subcutaneous and intermuscular fat, propagated, and frozen for use in this study. Cells were passaged 4 times, allowed to reach confluence, held for 2 d, and then differentiated with a standard hormone cocktail (d 0). At d 2, secondary differentiation media containing 1 of 4 concentrations of palmitoleic acid (0, 50, 150, or 300 µM) were added for 10 d. Cells were harvested on d 6 and 12 to assess fatty acid concentrations and gene expression. In addition, (13)C2 and (13)C18:0 stable isotopes were added on d 6 to measure lipogenesis and desaturase activity, respectively. Concentrations of C16:1 and total fatty acids increased (P < 0.05) linearly in response to palmitoleic acid supplement. Concentrations of C18:1 cis-11 and C20:1 cis-13 also increased (P < 0.01) in response to supplementation, suggesting elongation of palmitoleic acid in vitro. Concentrations of C16:1, C18:1 cis-11, and total fatty acids were also greater (P < 0.05) at d 12 compared with d 6. In contrast, C16:0, C18:0, and C18:1 cis-9 concentrations decreased (P < 0.05) in response to palmitoleic acid supplementation and were not affected (P > 0.05) by harvest day. The ratio of C18:1 cis-9/C18:0 and fractional synthetic rate (FSR) of desaturation decreased (P < 0.05) in response to increasing palmitoleic acid supplementation. In addition, FSR of lipogenesis was reduced (P < 0.05) in palmitoleic acid-treated cells. Messenger RNA abundance as determined by real-time quantitative PCR for stearoyl-CoA desaturase 1 (SCD1), fatty acid synthase (FASN), and elongase protein 6 (ELOVL6) genes were reduced (P < 0.05) by palmitoleic acid supplementation. Expression of a β-oxidation gene, carnitine palmitoyltransferase 1A (CPT1A), was upregulated (P < 0.05) with palmitoleic acid supplementation in a dose-responsive manner. Supplementation of palmitoleic acid to bovine adipocytes results in increased incorporation of this fatty acid and its elongation products into the adipocyte, which downregulates SCD1, FASN, and ELOVL6 to decrease lipogenesis and upregulates CPT1A, potentially increasing b-oxidation. These results suggest that palmitoleic acid, an end product of desaturation, can act as a regulator of lipogenesis, desaturation, and b-oxidation in bovine adipocytes.

J Anim Sci. 2012 Oct;90(10):3433-41

Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function.

Glucotoxicity and lipotoxicity contribute to the impaired beta-cell function observed in type 2 diabetes. Here we examine the effect of saturated and unsaturated fatty acids at different glucose concentrations on beta-cell proliferation and apoptosis. Adult rat pancreatic islets were cultured onto plates coated with extracellular
matrix derived from bovine corneal endothelial cells. Exposure of islets to saturated fatty acid (0.5 mmol/l palmitic acid) in medium containing 5.5, 11.1, or 33.3 mmol/l glucose for 4 days resulted in a five- to ninefold increase of beta-cell DNA fragmentation. In contrast, monounsaturated palmitoleic acid alone (0.5 mmol/l) or in combination with palmitic acid (0.25 or 0.5 mmol/l each) did not affect DNA fragmentation. Increasing concentrations of glucose promoted beta-cell proliferation that was dramatically reduced by palmitic acid. Palmitoleic acid enhanced the proliferation activity in medium containing 5.5 mmol/l glucose but had no additional effect at higher glucose concentrations (11.1 and 33.3 mmol/l). The cell-permeable ceramide analog C2-ceramide mimicked both the palmitic acid-induced beta-cell apoptosis and decrease in proliferation. Moreover, the ceramide synthetase inhibitor fumonisin B1 blocked the deleterious effects of palmitic acid on beta-cell viability. Additionally, palmitic acid but not palmitoleic acid decreased the expression of the mitochondrial adenine nucleotide translocator and induced release of cytochrome c from the mitochondria into the cytosol. Finally, palmitoleic acid improved beta-cell-secretory function that was reduced by palmitic acid. Taken together, these results suggest that the lipotoxic effect of the saturated palmitic acid involves an increased apoptosis rate coupled with reduced proliferation capacity of beta-cells and impaired insulin secretion. The deleterious effect of palmitate on beta-cell turnover is mediated via formation of ceramide and activation of the apoptotic mitochondrial pathway. In contrast, the monounsaturated palmitoleic acid does not affect beta-cell apoptosis, yet it promotes beta-cell proliferation at low glucose concentrations, counteracting the negative effects of palmitic acid as well as improving beta-cell function.

Diabetes. 2001 Jan;50(1):69-76

Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes.

BACKGROUND: Studies have demonstrated the beneficial effect of palmitoleic acid (C16:1 n-7) on reducing muscle insulin resistance and preventing beta-cell apoptosis. However, the effect of palmitoleic acid on diabetes remains to be elucidated. The aim of this study was to examine the antidiabetic effect of palmitoleic acid in KK-Ay mice, a spontaneous model for studies of obese type 2 diabetes with low insulin sensitivity. METHODS: KK-Ay mice were orally administered vehicle, 300 mg/kg of palmitoleic acid, or 300 mg/kg of palmitic acid (C16:0) on a daily basis for 4 weeks. RESULTS: Palmitoleic acid reduced body weight increase, ameliorated the development of hyperglycemia and hypertriglyceridemia, and improved insulin sensitivity. In addition, hepatic characteristics were significantly affected, as weight of the liver and hepatic triglyceride levels were lower in the palmitoleic acid group when compared to the control (vehicle and palmitic acid groups). Oil red O staining clearly indicated reduced hepatic lipid accumulation in response to palmitoleic acid. Furthermore, palmitoleic acid down-regulated mRNA expressions of proinflammatory adipocytokine genes (TNFa and resistin) in white adipose tissue and lipogenic genes (SREBP-1, FAS, and SCD-1) in liver. CONCLUSIONS: These results suggest that palmitoleic acid improves hyperglycemia and hypertriglyceridemia by increasing insulin sensitivity, in part owing to suppressing proinflammatory gene expressions and improving hepatic lipid metabolism in diabetic mice.

Lipids Health Dis. 2011 Jul 21;10:120

Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans.

OBJECTIVE: We investigated whether palmitoleate, which prevents insulin resistance in mice, predicts insulin sensitivity in humans. RESEARCH DESIGN AND METHODS: The fasting fatty acid pattern in the plasma free fatty acid (FFA) fraction was determined in 100 subjects at increased risk for type 2 diabetes. Insulin sensitivity was estimated during an oral glucose tolerance test (OGTT) at baseline and after 9 months of lifestyle intervention and measured during the euglycemic-hyperinsulinemic clamp (n = 79). RESULTS: Circulating palmitoleate (OGTT:F ratio = 8.2, P = 0.005; clamp:F ratio = 7.8, P = 0.007) but not total FFAs (OGTT:F ratio = 0.6, P = 0.42; clamp:F ratio = 0.7, P = 0.40) correlated positively with insulin sensitivity, independently of age, sex, and adiposity. High baseline palmitoleate predicted a larger increase in insulin sensitivity. For 1-SD increase in palmitoleate, the odds ratio for being in the highest versus the lowest tertile of adjusted change in insulin sensitivity was 2.35 (95% CI 1.16-5.35). CONCLUSIONS: Circulating palmitoleate strongly and independently predicts insulin sensitivity, suggesting that it plays an important role in the pathophysiology of insulin resistance in humans.

Diabetes Care. 2010 Feb;33(2):405-7

Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans.

The expansion of lower-body adipose tissue (AT) is paradoxically associated with reduced cardiovascular disease and diabetes risk. We examined whether the beneficial metabolic properties of lower-body AT are related to the production and release of the insulin-sensitizing lipokine palmitoleate (16:1n-7). Using venoarterial difference sampling, we investigated the relative release of 16:1n-7 from lower-body (gluteofemoral) and upper-body (abdominal subcutaneous) AT depots. Paired gluteofemoral and abdominal subcutaneous AT samples were analyzed for triglyceride fatty acid composition and mRNA expression. Finally, the triglyceride fatty acid composition of isolated human preadipocytes was determined. Relative release of 16:1n-7 was markedly higher from gluteofemoral AT compared with abdominal subcutaneous AT. Stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in endogenous 16:1n-7 production, was more highly expressed in gluteofemoral AT and was associated with greater enrichment of 16:1n-7. Furthermore, isolated human preadipocytes from gluteofemoral AT displayed a higher content of SCD1-derived fatty acids. We demonstrate that human gluteofemoral AT plays a major role in determining systemic concentrations of the lipokine palmitoleate. Moreover, this appears to be an inherent feature of gluteofemoral AT. We propose that the beneficial metabolic properties of lower-body AT may be partly explained by the intrinsically greater production and release of palmitoleate.

Diabetes. 2012 Jun;61(6):1399-403

Macadamia nut consumption modulates favourably risk factors for coronary artery disease in hypercholesterolemic subjects.

Macadamia nuts are rich source of monounsaturated fats (oleic and palmitoleic acids) and contain polyphenol compounds, therefore, their consumption can be expected to impart health benefits to humans. This study was conducted to examine the effects of consuming macadamia nuts in hypercholesterolemic male individuals on plasma biomarkers of oxidative stress, coagulation and inflammation. Seventeen hypercholesterolemic male subjects were given macadamia nuts (40-90 g/day), equivalent to 15% energy intake, for a period of 4 weeks. As expected, monounsaturated fatty acids (16:1n-7, 18:1n-9 and 20:1n-9) were elevated in the plasma lipids of all volunteers following intervention with macadamia nuts. Plasma markers of inflammation (leukotriene, LTB(4)) and oxidative stress (8-isoprostane) were significantly lower (1,353 +/- 225 vs. 1,030 +/- 129 pg/mL and 876 +/- 97 vs. 679 +/- 116 pg/mL, respectively) within 4 weeks following macadamia nut intervention. There was a non-significant (23.6%) reduction in the plasma TXB(2)/PGI(2) ratio following macadamia nut consumption. This study demonstrates, for the first time, that short-term macadamia nut consumption modifies favourably the biomarkers of oxidative stress, thrombosis and inflammation, the risk factors for coronary artery disease, despite an increase in dietary fat intake. These data, combined with our previous results on cholesterol-lowering effects of macadamia nuts, suggest that regular consumption of macadamia nuts may play a role in the prevention of coronary artery disease.

Lipids. 2007 Jun;42(6):583-7

Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats.

We have analyzed the effect of palmitoleic acid on short-term food intake in male rats. Administration of omega-7 palmitoleic acid by oral gavage significantly decreased food intake compared to palmitic acid, omega-9 oleic acid, or a vehicle control. Palmitoleic acid exhibited a dose-dependent effect in this context and did not cause general malaise. A triglyceride form of palmitoleate also decreased food intake, whereas olive oil, which is rich in oleic acid, did not. Palmitoleic acid accumulated within the small intestine in a dose-dependent fashion and elevated levels of the satiety hormone cholecystokinin (CCK). Both protein and mRNA levels of CCK were affected in this context. The suppression of food intake by palmitoleic acid was attenuated by intravenous injection of devazepide, a selective peripheral CCK receptor antagonist. Palmitoleic acid did not alter the expression of peroxisome proliferator-activated receptor alpha (PPARa) target genes, and a PPARa antagonist did not affect palmitoleic acid-induced satiety. This suggests that the PPARa pathway might not be involved in suppressing food intake in response to palmitoleic acid. We have shown that orally administered palmitoleic acid induced satiety, enhanced the release of satiety hormones in rats.

Appetite. 2013 Jun;65:1-7

Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania.

BACKGROUND: A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. RESULTS: The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. CONCLUSIONS: All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and a-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils.

Chem Cent J. 2012 Sep 20;6(1):106

Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men.

Palmitoleic acid is a minor monounsaturated fatty acid in the human diet and in blood plasma. Because macadamia oil is at least one potentially large source of palmitoleic acid, we tested its effect on plasma lipid levels against two other dietary fatty acids, oleic acid and palmitic acid. The dietary adjustments, through the use of supplements, provided comparisons of the three test fatty acids in which palmitoleic could be judged as behaving either like a saturated or a monounsaturated acid. Thirty-four hypercholesterolemic men ate the three test diets in random order in 3-week periods. Plasma total cholesterol and low density lipoprotein (LDL) cholesterol concentrations were similar with palmitic and palmitoleic acids and significantly higher than with oleic acid. High density lipoprotein (HDL) cholesterol was significantly lower with palmitoleic than with palmitic acid. The study confirms that, at least in hypercholesterolemic men, a modest increase in palmitic acid (+4% en) raises LDL cholesterol relative to oleic acid (+3% en), even when dietary cholesterol is low (< 165 mg/day). Palmitoleic acid (+4% en) behaves like a saturated and not a monounsaturated fatty acid in its effect on LDL cholesterol.

J Lipid Res. 1994 Apr;35(4):656-62


S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice.

Methylation reactions linked to homocysteine in the one-carbon metabolism are increasingly elicited in Alzheimer’s disease, although the association of hyperhomocysteinemia and of low B vitamin levels with the disease is still debated. We previously demonstrated that hyperhomocysteinemia and DNA hypomethylation induced by B vitamin deficiency are associated with PSEN1 and BACE1 overexpression and amyloid production. The present study is aimed at assessing S-adenosylmethionine effects in mice kept under a condition of B vitamin deficiency. To this end, TgCRND8 mice and wild-type littermates were assigned to control or B vitamin deficient diet, with or without S-adenosylmethionine supplementation. We found that S-adenosylmethionine reduced amyloid production, increased spatial memory in TgCRND8 mice and inhibited the upregulation of B vitamin deficiency-induced PSEN1 and BACE1 expression and Tau phosphorylation in TgCRND8 and wild-type mice. Furthermore, S-adenosylmethionine treatment reduced plaque spreading independently on B vitamin deficiency. These results strengthen our previous observations on the possible role of one-carbon metabolism in Alzheimer’s disease, highlighting hyperhomocysteinemia-related mechanisms in dementia onset/progression and encourage further studies aimed at evaluating the use of S-adenosylmethionine as a potential candidate drug for the treatment of the disease.

Neurobiol Aging . 2012 Jul;33(7):1482.e1-16

Methylation status and neurodegenerative markers in Parkinson disease.

BACKGROUND: Increased concentrations of plasma total homocysteine (tHcy) have been associated with age-related diseases, including dementia, stroke, and Parkinson disease (PD). Methylation status might link Hcy metabolism to neurodegenerative proteins in patients with PD. METHODS: We tested blood samples from 87 patients with PD (median age 68 years; 35 men) for tHcy, methylmalonic acid (MMA), vitamin B(12), vitamin B(6), folate, S-adenosyl methionine (SAM), S-adenosyl homocysteine (SAH), and amyloid-beta(1-42). We collected citrate blood from a subset of 45 patients to prepare platelet-rich plasma, and we used washed platelets to prepare cell extracts for amyloid precursor protein (APP) and alpha-synuclein assays. We used brain parenchyma sonography to estimate the substantia nigra echogenic area in a subset of 59 patients. RESULTS: Serum concentrations of tHcy were increased in PD patients (median 14.8 micromol/L). tHcy (beta coefficient = -0.276) and serum creatinine (beta = -0.422) were significant predictors of the ratio of SAM/SAH in plasma (P < 0.01). The plasma SAM/SAH ratio was a significant determinant for DemTect scores (beta = 0.612, P = 0.004). Significant negative correlations were found between concentrations of SAH in plasma and platelet APP and between SAM and platelet alpha-synuclein. A larger echogenic area of the substantia nigra was related to higher serum concentrations of MMA (P = 0.016). CONCLUSIONS: Markers of neurodegeneration (APP, alpha-synuclein) are related to markers of methylation (SAM, SAH) in patients with PD. Better cognitive function was related to higher methylation potential (SAM/SAH ratio).

Clin Chem . 2009 Oct;55(10):1852-60

S-adenosylmethionine prevents oxidative stress and modulates glutathione metabolism in TgCRND8 mice fed a B-vitamin deficient diet.

Oxidative stress, altered glutathione levels, and hyperhomocysteinemia play critical roles in Alzheimer’s disease. We studied the relationships between hyperhomocysteinemia, glutathione, and oxidative stress in TgCRND8 mice maintained in conditions of folate, B12, and B6 deficiency and the effect of S-adenosylmethionine supplementation. We found that hyperhomocysteinemia was correlated with increased reduced/oxidized brain glutathione ratio, with decreased glutathione S-transferase activity and increased lipid peroxidation. S-adenosylmethionine potentiated superoxide dismutase and glutathione S-transferase activity and restored altered brain glutathione and erythrocytes lipid peroxidation. These results underline the importance of S-adenosylmethionine as neuroprotective compound, acting both on methylation and oxidation metabolism.

J Alzheimers Dis . 2010;20(4):997-1002

Methyl nutrients, DNA methylation, and cardiovascular disease.

Diet plays an important role in the development and prevention of cardiovascular disease (CVD), but the molecular mechanisms are not fully understood. DNA methylation has been implicated as an underlying molecular mechanism that may account for the effect of dietary factors on the development and prevention of CVD. DNA methylation is an epigenetic process that provides “marks” in the genome by which genes are set to be transcriptionally activated or silenced. Epigenomic marks are heritable but are also responsive to environmental shifts, such as changes in nutritional status, and are especially vulnerable during development. S-adenosylmethionine is the methyl group donor for DNA methylation and several nutrients are required for the production of S-adenosylmethionine. These methyl nutrients include vitamins (folate, riboflavin, vitamin B12, vitamin B6, choline) and amino acids (methionine, cysteine, serine, glycine). As such, imbalances in the metabolism of these nutrients have the potential to affect DNA methylation. The focus of this review is to provide an overview on the current understanding of the relationship between methyl nutrient status and DNA methylation patterns and the potential role of this interaction in CVD pathology.

Mol Nutr Food Res . 2014 Jan;58(1):172-82

S-adenosylmethionine and 5-methyltetrahydrofolate are associated with endothelial function after controlling for confounding by homocysteine: the Hoorn Study.

OBJECTIVE: To explore to what extent homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine, total folate, 5-methyltetrahydrofolate (5-MTHF), vitamin B12, and vitamin B6 are associated with endothelium-dependent, flow-mediated vasodilation (FMD), and whether these associations are stronger in individuals with diabetes or other cardiovascular risk factors. METHODS AND RESULTS: In this population-based study of 608 elderly people, FMD and endothelium-independent nitroglycerin-mediated dilation (NMD) were ultrasonically estimated from the brachial artery (absolute change in diameter [mum]). High SAM and low 5-MTHF were significantly associated with high and low FMD, respectively (linear regression coefficient, [95% confidence interval]): 48.57 microm (21.16; 75.98) and -32.15 microm (-59.09; -5.20), but high homocysteine was not (-15.11 microm (-42.99; 12.78). High SAM and low 5-MTHF were also significantly associated with high and low NMD, respectively. NMD explained the association of 5-MTHF with FMD but not of SAM. No interactions were observed for diabetes or cardiovascular risk factors. CONCLUSIONS: In this elderly population, both SAM and 5-MTHF are associated with endothelial and smooth muscle cell function. The effect of homocysteine on endothelial function is relatively small compared with SAM and 5-MTHF. The relative impact of SAM, 5-MTHF, and homocysteine, and the mechanisms through which these moieties may affect endothelial and smooth muscle cell function need clarification.

Arterioscler Thromb Vasc Biol . 2005 Apr;25(4):778-84

Oral S-adenosylmethionine in primary fibromyalgia. Double-blind clinical evaluation.

S-adenosylmethionine is a relatively new anti-inflammatory drug with analgesic and anti-depressant effects. Efficacy of 800 mg orally administered s-adenosylmethionine daily versus placebo for six weeks was investigated in 44 patients with primary fibromyalgia in double-blind settings. Tender point score, isokinetic muscle strength, disease activity, subjective symptoms (visual analog scale), mood parameters and side effects were evaluated. Improvements were seen for clinical disease activity (P = 0.04), pain experienced during the last week (P = 0.002), fatigue (P = 0.02), morning stiffness (P = 0.03) and mood evaluated by Face Scale (P = 0.006) in the actively treated group compared to placebo. The tender point score, isokinetic muscle strength, mood evaluated by Beck Depression Inventory and side effects did not differ in the two treatment groups. S-adenosylmethionine has some beneficial effects on primary fibromyalgia and could be an important option in the treatment hereof.

Scand J Rheumatol. 1991;20(4):294-302

Low S-adenosylmethionine concentrations found in patients with severe inflammatory bowel disease.

BACKGROUND: S-adenosy-lmethionine is a methyl donor in many cellular reactions including detoxification of constantly produced hydrogen sulphide in the colon. A reduced capacity to detoxify hydrogen sulphide may be implicated in the pathogenesis of inflammatory bowel disease. S-adenosylmethionine could be low if this assumption is correct. We compared S-adenosylmethionine concentrations in whole blood in patients with severe and moderate inflammatory bowel disease with healthy reference persons. METHODS: S-adenosylmethionine concentrations in whole blood were measured using high-pressure liquid chromatography. Patients with Crohn’s disease (n=21), ulcerative colitis (n=7) and healthy age-matched reference persons (or controls) (n=17) were studied. RESULTS: S-adenosylmethionine concentrations were significantly decreased in patients with severe inflammatory bowel disease (mean 1.10 mg/l) as compared to patients with moderate Crohn’s disease and ulcerative colitis (mean 1.83 mg/l) and reference persons (mean 1.84 mg/l). Statistically significant inverse correlations were found between S-adenosylmethionine concentration and activity index (p<0.01 and R2=0.86) as well as Crohn’s disease activity index (p<0.01 and R2=0.50) scores. CONCLUSIONS: Low concentrations of S-adenosylmethionine were found in patients with severe inflammatory bowel disease. Future studies will show whether S-adenosylmethionine is a marker for disease activity and a possible tool for investigation of sulphur toxicity as a causative mechanism in inflammatory bowel disease.

Clin Chem Lab Med. 2004;42(6):648-53

Double-blind clinical trial of S-adenosylmethionine versus ibuprofen in the treatment of osteoarthritis.

Thirty-six subjects with osteoarthritis of the knee, the hip, and/or the spine were enrolled in a randomized double-blind study. Patients received a daily oral dose of 1,200 mg of S-adenosylmethionine (SAMe) or 1,200 mg of ibuprofen for four weeks. Morning stiffness, pain at rest, pain on motion, crepitus, swelling, and limitation of motion of the affected joints were assessed before and after treatment. The total score obtained by the evaluation of all the individual clinical parameters improved to the same extent in patients treated with SAMe or ibuprofen. Both treatments were well tolerated and no patient from either group withdrew from the study.

Am J Med . 1987 Nov 20;83(5A):81-3

Double-blind, placebo-controlled study of S-adenosyl-L-methionine in depressed postmenopausal women.

S-adenosyl-L-methionine (SAMe) is a naturally occurring substance which is a major source of methyl groups in the brain and has been found in previous studies to be an effective antidepressant. The aim of this study was to assess the efficacy of oral SAMe in the treatment of depressed postmenopausal women in a 30-day double-blind placebo-controlled randomized trial. During the course of the study, 80 women, between the ages of 45 and 59, who were diagnosed as having DSM-III-R major depressive disorder or dysthymia between 6 and 36 months following either
natural menopause or hysterectomy, underwent 1 week of single-blind placebo washout, followed by 30 days of double-blind treatment with either SAMe 1,600 mg/day or placebo. There was a significantly greater improvement in depressive symptoms in the group treated with SAMe compared to the placebo group from day 10 of the study. Side effects were mild and transient.

Psychother Psychosom . 1993;59(1):34-40